Skip to main content

Mechanical Properties of Composites Based on Poly(Lactic Acid) and Soda-Treated Sugarcane Bagasse Pulp

  • Chapter
  • First Online:
  • 1321 Accesses

Abstract

One of the drawbacks of poly(lactic acid) (PLA) is related to its low toughness which limits the range of applications it can be applied to. Thus, the use of soda-treated pulp of sugarcane bagasse (SCB) as a reinforcing agent was applied in our research. The composites were prepared by mixing the pulp in various percentages, i.e., up to 20 wt%. The mechanical properties of the resulting composites were evaluated to assess the efficacy of the reinforcing agent. It was found that the tensile strength was decreased by the increase of the filler content compared to the neat PLA. However, Young’s modulus was increased up to 13% at 20 wt% of the loading filler.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anderson KS, Schreck KM, Hillmyer MA (2008) Toughening polylactide. Polym Rev 48:85–108

    Article  CAS  Google Scholar 

  • Braun B, Dorgan JR, Hollingsworth LO (2012) Supra-molecular ecobionanocomposites based on polilactide and cellulosic nanowhiskers: synthesis and properties. Biomacromolecules 13:2013–2019. dx.doi.org/10.1021/bm300149w

    Article  CAS  Google Scholar 

  • Cheng Q, Wang S, Rials TG (2009) Poly (vinyl alcohol) nanocomposites reinforced with cellulose fibrils isolated by high intensity ultrasonication. Compos Part A Appl Sci Manuf 40:218–224

    Article  Google Scholar 

  • Doherty WOS, Rainey TJ (2006) Bagasse fractionation by the soda process. Proceeding of the Australian Society of Sugar Cane Tecnologists 2006, http://eprints.qut.edu.au/25678/

  • Espino-Pérez E, Bras J, Ducruet V, Guinault A, Dufresne A, Domenek S (2013) Influence of chemical surface modification of cellulose nanowhiskers on thermal, mechanical, and barrier properties of poly(lactide) based bionanocomposites. Eur Polym J 49:3144–3154. http://dx.doi.org/10.1016/j.eurpolymj.2013.07.017

    Article  Google Scholar 

  • Frone AN, Berlioz S, Chailan J-F, Panaitescu DM, Donescu D (2011) Cellulose Fiber-Reinforced Polylactic acid. Polym Compos 32:976–985

    Article  CAS  Google Scholar 

  • Graupner N, Herrmann AS, Mussig J (2009) Natural and man-made cellulose fibrereinforced poly(lactic acid) (PLA) composites: an overview about mechanical characteristics and application areas. Compos A: Appl Sci Manuf 40(6–7):810–821

    Article  Google Scholar 

  • Haafiz MKM, Hassan A, Zakaria Z, Inuwa IM, Islam MS, Jawaid M (2013) Properties of polylactic acid composites reinforced with oil palm biomass microcrystalline cellulose. Carbohydr Polym 98:139–145. http://dx.doi.org/10.1016/j.carbpol.2013.05.069

    Article  CAS  Google Scholar 

  • Huda MS, Drzal LT, Misra M, Mohanty AK, Williams K, Mielewski DF (2005) A study on biocomposites from recycled newspaper fiber and poly(lactic acid). Ind Eng Chem Res 44(15):5593–5601

    Article  CAS  Google Scholar 

  • Huda MS, Drzal LT, Misra M, Mohanty AK (2006) Wood-fiber-reinforced poly(lactic acid) composites: evaluation of the physicomechanical and morphological properties. J Appl Polym Sci 102(5):4856–4869

    Article  CAS  Google Scholar 

  • Jonoobi M, Harun J, Mathew AP, Oksman K (2010) Mechanical properties of cellulose nanofiber (CNF) reinforced palylactic acid (PLA) prepared by twin screw extrusion. Compos Sci Technol 70:1742–1747. doi:10.1016/j.compscitech.2010.07.005

    Article  CAS  Google Scholar 

  • Lunt J (1998) Large-scale production, properties and commercial application of polylactic acid polymers. Polym Degrad Stab:145–152

    Google Scholar 

  • Maddahy NK, Ramezany O, Kermanian H (2012) Production of nanocrystalline cellulose from sugarcane bagasse, proceedings of the 4th international conference on nanostructures (ICNS4) 12–14 March, 2012, Kish Island, I.R. Iran

    Google Scholar 

  • Maria D, Garcia S, Lagaron JM (2010) On the use of plant cellulose nanowhiskers to enhance the barrier properties of polylactic acid. Cellulose 17(5):987–1004

    Article  Google Scholar 

  • Maurizio A, Gordana B-G, Aleksandra B, Maria EE, Gennaro G, Anita G (2008) Poly(lactic acid)-based biocomposites reinforced with kenaf fibers. J Appl Polym Sci 108(6):3542–3551

    Article  Google Scholar 

  • Mohanty AK, Misra M, Drzal LT (2002) Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. J Polym Environ 9(2):19–26

    Article  Google Scholar 

  • Moubarik A, Grimi N, Bousetta N (2013) Structural and thermal characterization of Moroccan sugar cane bagasse cellulose fibers and their application as a reinforcing agent in low density polyethylene. Compos Part B 52:233–238. http://dx.doi.org/10.1016/j.compositesb.2013.04.040

    Article  CAS  Google Scholar 

  • Oksman K, Skrifvars M, Selin JF (2003) Natural fibers as reinforcement in polylactic acid (PLA) composites. Compos Sci Technol 63(9):1317–1324

    Article  CAS  Google Scholar 

  • Pei A, Zhou Q, Berglund LA (2010) Functionalized cellulose nanocrystals as biobased nucleation agents in poly(L-lactide) (PLLA) – crystallization and mechanical propertiy effects. Compos Sci Technol 70:815–821. doi:10.1016/j.compscitech.2010.01.018

    Article  CAS  Google Scholar 

  • Petersson L, Kvien I, Oksman K (2007) Structure and thermal properties of poly (lactic acid)/cellulose whiskers nanocomposite materials. Compos Sci Technol 67:2535–2544

    Article  CAS  Google Scholar 

  • Qin L, Qiu J, Liu M, Ding S, Shao L, Lü S, Zhang G, Zhao Y, Fu X (2011) Mechanical and thermal properties of poly(lactic acid) composites with rice straw fiber modified by poly(butyl acrylate). Chem Eng J 166:772–778

    Article  CAS  Google Scholar 

  • Qu P, Goa Y, Wu GF, Zhang LP (2010) Nanocomposite of poly (lactic acid) reinforced with cellulose nanofibrils. Bioresources 5(3):1811–1823

    CAS  Google Scholar 

  • Raquez J-M, Habibi Y, Murariu M, Dubois P (2013) Polylactide (PLA)-based nanocomposites. Prog Polym Sci 38:1504–1542. http://dx.doi.org/10.1016/j.progpolymsci.2013.05.014

    Article  CAS  Google Scholar 

  • Sahin HT (2007) Caustic soda and bio-soda pulping of jute. J Appl Biol Sci 1(1):63–67

    Google Scholar 

  • Samir MASA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626

    Article  CAS  Google Scholar 

  • Senawi R, Alaudin SM, Saleh RM, Shueb MI (2013) Polylactic acid/empty fruit bunch fiber biocomposite: influence of alkaline and silane treatment on the mechanical properties. Int J Biosci Biochem Bioinform 3:1

    Google Scholar 

  • Shibata M, Oyamada S, Kobayashi S, Yaginuma D (2004) Mechanical composites and biodegradability of green composites based on biodegradable polyesters and lyocell fabric. J Appl Polym Sci 92(6):3857–3863

    Article  CAS  Google Scholar 

  • Song YS, Lee JT, Ji DS, Kim MW, Lee SH, Youn JR (2012) Viscoelastic and thermal behaviour of woven hemp fiber reinforced poly(lactic acid) composites. Compos Part B 43:856–860

    Article  CAS  Google Scholar 

  • Subyakto, Hermiati E, Masruchin N, Ismadi, Prasetiyo KW, Kusumaningrum WB, Subiyanto B (2011) Injection molded of bio-micro-composite from natural fibers and polylactic acid. Wood Res J 2(1)

    Google Scholar 

  • Šumigin D, Tarasova E, Krumme A, Viikna A (2013) Influence of cellulose stearate (CS) content on thermal and rheological properties of poly(lactic acid)/CS composites. Key Eng Mater 559:99–104. doi:10.4028/www.scientific.net/KEM.559.99

    Article  Google Scholar 

  • Suryanegara L, Nakagaito AN, Yano H (2009) The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites. Compos Sci Technol 69:1187–1192. doi:10.1016/j.compscitech.2009.02.022

    Article  CAS  Google Scholar 

  • Syamani FA, Susanthy D, Sudarmanto, Suryanegara L (2013) Production of green compocites based on polylactic acid and cellulose fibers from oil palm fronds, The 3rd International Symposium for Sustainable Humanosphere (ISSH) A Forum of Humanosphere Science School (HSS) 2013

    Google Scholar 

  • Vink ETH, Rabago KR, Glassner JR, Gruber PR (2003) Application of life cycle assessment to natureworks polylactide (PLA) production. Polym Degrad Stab 80:403–419

    Article  CAS  Google Scholar 

  • Wigner EP (1965) Theory of traveling-wave optical laser. Phys Rev 134:A635–A646

    Google Scholar 

  • Xu H, Liu C-Y, Chen C, Hsiao BS, Zhong G-J, Li Z-M (2012) Easy alignment and effective nucleation activity of ramie fibers in injection-molded poly(lactic acid) biocomposites. Biopolymers 97(10):825–839

    Article  CAS  Google Scholar 

  • Yew GH, Mohd Yusof AM, Mohd Ishak ZA, Ishiaku US (2005) Water absorption and enzymatic degradation of poly (lactic acid)/rice starch composites. Polym Degrad Stab 90:488–500

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by LIPI through competitive program on advanced materials and JST-JICA Satreps Project on Integrated Biorefinery FY 2013-2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisman Suryanegara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Suryanegara, L., Kurniawan, Y.D., Syamani, F.A., Nurhamiyah, Y. (2018). Mechanical Properties of Composites Based on Poly(Lactic Acid) and Soda-Treated Sugarcane Bagasse Pulp. In: McLellan, B. (eds) Sustainable Future for Human Security. Springer, Singapore. https://doi.org/10.1007/978-981-10-5433-4_19

Download citation

Publish with us

Policies and ethics