Skip to main content

Privacy-Preserving Deep Learning: Revisited and Enhanced

  • Conference paper
  • First Online:
Applications and Techniques in Information Security (ATIS 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 719))

Abstract

We build a privacy-preserving deep learning system in which many learning participants perform neural network-based deep learning over a combined dataset of all, without actually revealing the participants’ local data to a curious server. To that end, we revisit the previous work by Shokri and Shmatikov (ACM CCS 2015) and point out that local data information may be actually leaked to an honest-but-curious server. We then move on to fix that problem via building an enhanced system with following properties: (1) no information is leaked to the server; and (2) accuracy is kept intact, compared to that of the ordinary deep learning system also over the combined dataset. Our system makes use of additively homomorphic encryption, and we show that our usage of encryption adds little overhead to the ordinary deep learning system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Size of 140106 gradients each of 32 bits; the size is computed via the formula \(\frac{140106\times 32}{8\times 10^6} \approx 0.56\).

References

  1. Stanford Deep Learning Tutorial. http://deeplearning.stanford.edu

  2. The MNIST dataset. http://yann.lecun.com/exdb/mnist/

  3. Aono, Y., Boyen, X., Phong, L.T., Wang, L.: Key-Private Proxy Re-encryption under LWE. In: Paul, G., Vaudenay, S. (eds.) INDOCRYPT 2013. LNCS, vol. 8250, pp. 1–18. Springer, Cham (2013). doi:10.1007/978-3-319-03515-4_1

    Chapter  Google Scholar 

  4. Aono, Y., Hayashi, T., Phong, L.T., Wang, L.: Efficient key-rotatable and security-updatable homomorphic encryption. In: Fifth ACM International Workshop on Security in Cloud Computing (SCC), 2017, pp. 35–42. ACM (2017)

    Google Scholar 

  5. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic encryption: bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53887-6_1

    Chapter  Google Scholar 

  6. Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Le, Q.V., Mao, M.Z., Ranzato, M., Senior, A.W., Tucker, P.A., Yang, K., Ng, A.Y.: Large scale distributed deep networks. In: NIPS 2012, pp. 1232–1240 (2012)

    Google Scholar 

  7. Goldreich, O.: The Foundations of Cryptography - Volume 2, Basic Applications. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  8. Hitaj, B., Ateniese, G., PĂ©rez-Cruz, F.: Deep models under the GAN: information leakage from collaborative deep learning. CoRR abs/1702.07464 (2017)

    Google Scholar 

  9. Lindner, R., Peikert, C.: Better key sizes (and Attacks) for LWE-based encryption. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19074-2_21

    Chapter  Google Scholar 

  10. Liu, M., Nguyen, P.Q.: Solving BDD by enumeration: an update. In: Dawson, E. (ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 293–309. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36095-4_19

    Chapter  Google Scholar 

  11. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in natural images with unsupervised feature learning. In: NIPS Workshop on Deep Learning and Unsupervised Feature Learning 2011 (2011)

    Google Scholar 

  12. Shokri, R., Shmatikov, V.: Privacy-preserving deep learning. In: ACM CCS 2015, pp. 1310–1321. ACM (2015)

    Google Scholar 

Download references

Acknowledgement

This work is partially supported by JST CREST #JPMJCR168A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le Trieu Phong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Phong, L.T., Aono, Y., Hayashi, T., Wang, L., Moriai, S. (2017). Privacy-Preserving Deep Learning: Revisited and Enhanced. In: Batten, L., Kim, D., Zhang, X., Li, G. (eds) Applications and Techniques in Information Security. ATIS 2017. Communications in Computer and Information Science, vol 719. Springer, Singapore. https://doi.org/10.1007/978-981-10-5421-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5421-1_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5420-4

  • Online ISBN: 978-981-10-5421-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics