Skip to main content

Imaging Method: Computed Tomography and Magnetic Resonance Imaging

  • Chapter
  • First Online:
Best Practice Protocols for Physique Assessment in Sport

Abstract

Magnetic resonance imaging and computed tomography are imaging techniques that provide a highly accurate measure of human body composition at the tissue-organ level. Computed tomography works through measuring the attenuation of X-rays through body tissues, whereas magnetic resonance imaging uses a strong magnetic field to align positively charged protons in the body’s tissues which are digitised to provide a greyscale image. Magnetic resonance imaging is emerging as a safe method of choice over computed tomography as it does not expose participants to radiation. Due to constraints in cost and availability, the techniques are generally only used for athletes as part of a research project or for clinical purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abate N, Burns D, Peshock RM, Garg A, Grundy SM (1994) Estimation of adipose tissue mass by magnetic resonance imaging: validation against dissection in human cadavers. J Lipid Res 35(8):1490–1496

    CAS  PubMed  Google Scholar 

  • Albanese CV, Diessel E, Genant HK (2003) Clinical applications of body composition measurements using DXA. J Clin Densitom 6(2):75–85

    Article  PubMed  Google Scholar 

  • Andres A, Mitchell AD, Badger TM (2010) QMR: validation of an infant and children body composition instrument using piglets against chemical analysis. Int J Obes 34(4):775–780

    Article  CAS  Google Scholar 

  • Brenner DJ, Hall EJ (2007) Computed tomography–an increasing source of radiation exposure. N Engl J Med 357(22):2277–2284

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury B, Sjostrom L, Alpsten M, Kostanty J, Kvist H, Lofgren R (1994) A multicompartment body composition technique based on computerized tomography. Int J Obes Relat Metab Disord 18(4):219–234

    CAS  PubMed  Google Scholar 

  • EchoMRI (n.d.) http://www.echomri.com/. Accessed 21 Oct 2016

  • Fowler PA, Fuller MF, Glasbey CA, Foster MA, Cameron GG, McNeill G, Maughan RJ (1991) Total and subcutaneous adipose tissue in women: the measurement of distribution and accurate prediction of quantity by using magnetic resonance imaging. Am J Clin Nutr 54(1):18–25

    CAS  PubMed  Google Scholar 

  • GE Healthcare Global (Country Selector) (n.d.). http://www3.gehealthcare.com/en/global_gateway. Accessed 21 Oct 2016

  • Heymsfield SB, Fulenwider T, Nordlinger B, Barlow R, Sones P, Kutner M (1979) Accurate measurement of liver, kidney, and spleen volume and mass by computerized axial tomography. Ann Intern Med 90(2):185–187

    Article  CAS  PubMed  Google Scholar 

  • Heymsfield SB, Wang Z, Baumgartner RN, Ross R (1997) Human body composition: advances in models and methods. Annu Rev Nutr 17:527–558

    Article  CAS  PubMed  Google Scholar 

  • Janssen I, Ross R (1999) Effects of sex on the change in visceral, subcutaneous adipose tissue and skeletal muscle in response to weight loss. Int J Obes Relat Metab Disord 23(10):1035–1046

    Article  CAS  PubMed  Google Scholar 

  • Kullberg J, J Brandberg J, Angelhed JE, Frimmel H, Bergelin E, Strid L, Ahlström H, Johansson L, Lönn L (2009a) Whole-body adipose tissue analysis: comparison of MRI, CT and dual energy X-ray absorptiometry. Br J Radiol 82(974):123–130

    Article  CAS  PubMed  Google Scholar 

  • Kullberg J, Johansson L, Ahlstrom H, Courivaud F, Koken P, Eggers H, Bornert P (2009b) Automated assessment of whole-body adipose tissue depots from continuously moving bed MRI: a feasibility study. J Magn Reson Imaging 30(1):185–193

    Article  PubMed  Google Scholar 

  • Kvist H, Sjostrom L, Tylen U (1986) Adipose tissue volume determinations in women by computed tomography: technical considerations. Int J Obes 10(1):53–67

    CAS  PubMed  Google Scholar 

  • LeBlanc A, Lin C, Shackelford L, Sinitsyn V, Evans H, Belichenko O, Schenkman B, Kozlovskaya I, Oganov V, Bakulin A, Hedrick T, Feeback D (2000) Muscle volume, MRI relaxation times (T2), and body composition after spaceflight. J Appl Physiol 89(6):2158–2164

    CAS  PubMed  Google Scholar 

  • Lee SY, Gallagher D (2008) Assessment methods in human body composition. Curr Opin Clin Nutr Metab Care 11(5):566–572

    Article  PubMed  PubMed Central  Google Scholar 

  • Manini TM, Buford TW, Lott DJ, Vandenborne K, Daniels MJ, Knaggs JD, Patel H, Pahor M, Perri MG, Anton SD (2014) Effect of dietary restriction and exercise on lower extremity tissue compartments in obese, older women: a pilot study. J Gerontol A Biol Sci Med Sci 69(1):101–108

    Article  PubMed  Google Scholar 

  • Mitsiopoulos N, Baumgartner RN, Heymsfield SB, Lyons W, Gallagher D, Ross R (1998) Cadaver validation of skeletal muscle measurement by magnetic resonance imaging and computerized tomography. J Appl Physiol 85(1):115–122

    CAS  PubMed  Google Scholar 

  • Orchard JW, Read JW, Anderson IJ (2005) The use of diagnostic imaging in sports medicine. Med J Aust 183(9):482–486

    PubMed  Google Scholar 

  • Philips Healthcare (Country Selector) (n.d.). http://www.usa.philips.com/healthcare/country-selector. Accessed 21 Oct 2016

  • Prado CM, Heymsfield SB (2014) Lean tissue imaging: a new era for nutritional assessment and intervention. JPEN J Parenter Enteral Nutr 38(8):940–953

    Article  PubMed  PubMed Central  Google Scholar 

  • Ross R (1996) Magnetic resonance imaging provides new insights into the characterization of adipose and lean tissue distribution. Can J Physiol Pharmacol 74(6):778–785

    Article  CAS  PubMed  Google Scholar 

  • Ross R, Goodpaster B, Kelley D, Boada F (2000) Magnetic resonance imaging in human body composition research. From quantitative to qualitative tissue measurement. Ann N Y Acad Sci 904:12–17

    Article  CAS  PubMed  Google Scholar 

  • Ross R, Leger L, Morris D, de Guise J, Guardo R (1992) Quantification of adipose tissue by MRI: relationship with anthropometric variables. J Appl Physiol 72(2):787–795

    CAS  PubMed  Google Scholar 

  • Rossner S, Bo WJ, Hiltbrandt E, Hinson W, Karstaedt N, Santago P, Sobol WT, Crouse JR (1990) Adipose tissue determinations in cadavers--a comparison between cross-sectional planimetry and computed tomography. Int J Obes 14(10):893–902

    CAS  PubMed  Google Scholar 

  • Shen W, Punyanitya M, Wang Z, Gallagher D, St-Onge MP, Albu J, Heymsfield SB, Heshka S (2004a) Total body skeletal muscle and adipose tissue volumes: estimation from a single abdominal cross-sectional image. J Appl Physiol 97(6):2333–2338

    Article  PubMed  Google Scholar 

  • Shen W, Punyanitya M, Wang Z, Gallagher D, St-Onge MP, Albu J, Heymsfield SB, Heshka S (2004b) Visceral adipose tissue: relations between single-slice areas and total volume. Am J Clin Nutr 80(2):271–278

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shen W, Wang Z, Punyanita M, Lei J, Sinav A, Kral JG, Imielinska C, Ross R, Heymsfield SB (2003) Adipose tissue quantification by imaging methods: a proposed classification. Obes Res 11(1):5–16

    Article  PubMed  PubMed Central  Google Scholar 

  • Siemens Healthineers (n.d.). https://www.healthcare.siemens.com. Accessed 21 Oct 2016

  • Silver HJ, Welch EB, Avison MJ, Niswender KD (2010) Imaging body composition in obesity and weight loss: challenges and opportunities. Diabetes Metab Syndr Obes 3:337–347

    Article  PubMed  PubMed Central  Google Scholar 

  • Swe Myint K, Napolitano A, Miller SR, Murgatroyd PR, Elkhawad M, Nunez DJ, Finer N (2010) Quantitative magnetic resonance (QMR) for longitudinal evaluation of body composition changes with two dietary regimens. Obesity (Silver Spring, Md) 18(2):391–396

    Article  Google Scholar 

  • Toshiba Medical (International) (n.d.) http://www.toshibamedicalsystems.com/. Accessed 21 Oct 2016

  • Tsubahara A, Chino N, Akaboshi K, Okajima Y, Takahashi H (1995) Age-related changes of water and fat content in muscles estimated by magnetic resonance (MR) imaging. Disabil Rehabil 17(6):298–304

    Article  CAS  PubMed  Google Scholar 

  • United States Food and Drug Administration (2017) What are the radiation risks from CT? United States Food and Drug Administration. http://www.fda.gov/Radiation-EmittingProducts/RadiationEmittingProductsandProcedures/MedicalImaging/MedicalX-Rays/ucm115329.htm. Accessed 10 July 2017

  • Wang ZM, Pierson RN Jr, Heymsfield SB (1992) The five-level model: a new approach to organizing body-composition research. Am J Clin Nutr 56(1):19–28

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristen L. MacKenzie-Shalders .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

MacKenzie-Shalders, K.L. (2018). Imaging Method: Computed Tomography and Magnetic Resonance Imaging. In: Hume, P., Kerr, D., Ackland, T. (eds) Best Practice Protocols for Physique Assessment in Sport. Springer, Singapore. https://doi.org/10.1007/978-981-10-5418-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5418-1_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5417-4

  • Online ISBN: 978-981-10-5418-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics