Biomaterial-Based Microfluidics for Cell Culture and Analysis

  • Ruizhi Ning
  • Qichen Zhuang
  • Jin-Ming LinEmail author
Part of the Integrated Analytical Systems book series (ANASYS)


Microfluidic devices can integrate drug injection, bioreactors, sample separation and detection on a individual platform with properties of fluidic incubation, programmable three-dimensional (3D) channels in micro scale, low reagent consumption, and on-line detection, which makes them popular in in vitro cell culture and analysis. Since the appearance of the initial generation of microfluidics in 1970s, materials for microfluidics experienced the age of inorganics such as silicon and glasses, and now have entered the period of organics, in which main materials used in microfluidics are polymers. Also, polymers constructed the chips gradually undertake much more functions rather than a basic supporting plane through applying functional and smart biomaterials. In this chapter, biomaterials utilized in microfluidics will be elaborated from the perspectives of the fabrication of microfluidics, cell culture and analysis on chips.


Biomaterials Microfluidic chip Cell culture Scaffolds Cell analysis Cell observation 


  1. 1.
    Paguirigan AL, Beebe DJ (2008) Microfluidics meet cell biology: bridging the gap by validation and application of microscale techniques for cell biological assays. BioEssays 30(9):811–821. doi: 10.1002/bies.20804 CrossRefGoogle Scholar
  2. 2.
    Terry SC, Jerman JH, Angell JB (1979) A gas chromatographic air analyzer fabricated on a silicon wafer. IEEE Trans Electron Dev 26(12):1880–1886. doi: 10.1109/T-ED.1979.19791 CrossRefGoogle Scholar
  3. 3.
    Ozaydin-Ince G, Coclite AM, Gleason KK (2012) CVD of polymeric thin films: applications in sensors, biotechnology, microelectronics/organic electronics, microfluidics, MEMS, composites and membranes. Rep Prog Phys 75(1):16501. doi: 10.1088/0034-4885/75/1/016501 CrossRefGoogle Scholar
  4. 4.
    Tanzi S, Østergaard PF, Matteucci M, Christiansen TL, Cech J, Marie R, Taboryski R (2012) Fabrication of combined-scale nano-and microfluidic polymer systems using a multilevel dry etching, electroplating and molding process. J Micromech Microeng 22(11):115008. doi: 10.1088/0960-1317/22/11/115008 CrossRefGoogle Scholar
  5. 5.
    Qin D, Xia Y, Whitesides GM (2010) Soft lithography for micro-and nanoscale patterning. Nat Protoc 5(3):491–502. doi: 10.1038/nprot.2009.234 CrossRefGoogle Scholar
  6. 6.
    Wang J, He Y, Xia H, Niu LG, Zhang R, Chen QD, Zhang YL, Li YF, Zeng SJ, Qin JH, Lin BC, Sun HB (2010) Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization. Lab Chip 10(15):1993–1996. doi: 10.1039/c003264f CrossRefGoogle Scholar
  7. 7.
    Zhang L, Wang W, Ju XJ, Xie R, Liu Z, Chu LY (2015) Fabrication of glass-based microfluidic devices with dry film photoresists as pattern transfer masks for wet etching. RSC Adv 5(8):5638–5646. doi: 10.1039/C4RA15907A CrossRefGoogle Scholar
  8. 8.
    Sun G, Zhao X, Kim CJC (2012) Fabrication of very-high-aspect-ratio microstructures in complex patterns by photoelectrochemical etching. J Microelectromech Syst 21(6):1504–1512. doi: 10.1109/JMEMS.2012.2211574 CrossRefGoogle Scholar
  9. 9.
    You JB, Min KI, Lee B, Kim DP, Im SG (2013) A doubly cross-linked nano-adhesive for the reliable sealing of flexible microfluidic devices. Lab Chip 13(7):1266–1272. doi: 10.1039/c2lc41266g CrossRefGoogle Scholar
  10. 10.
    Dochow S, Beleites C, Henkel T, Mayer G, Albert J, Clement J, Krafft C, Popp J (2013) Quartz microfluidic chip for tumour cell identification by Raman spectroscopy in combination with optical traps. Anal Bioanal Chem 405(8):2743–2746. doi: 10.1007/s00216-013-6726-3 CrossRefGoogle Scholar
  11. 11.
    Ou J, Glawdel T, Ren CL, Pawliszyn J (2009) Fabrication of a hybrid PDMS/SU-8/quartz microfluidic chip for enhancing UV absorption whole-channel imaging detection sensitivity and application for isoelectric focusing of proteins. Lab Chip 9(13):1926–1932. doi: 10.1039/b821438g CrossRefGoogle Scholar
  12. 12.
    van Midwoud PM, Janse A, Merema MT, Groothuis GM, Verpoorte E (2012) Comparison of biocompatibility and adsorption properties of different plastics for advanced microfluidic cell and tissue culture models. Anal Chem 84(9):3938–3944. doi: 10.1021/ac300771z CrossRefGoogle Scholar
  13. 13.
    Xiao Y, Zhang B, Liu H, Miklas JW, Gagliardi M, Pahnke A, Thavandiran N, Sun Y, Simmons C, Keller G, Radisic M (2014) Microfabricated perfusable cardiac biowire: a platform that mimics native cardiac bundle. Lab Chip 14(5):869–882. doi: 10.1039/c3lc51123e CrossRefGoogle Scholar
  14. 14.
    Tsougeni K, Petrou PS, Papageorgiou DP, Kakabakos SE, Tserepi A, Gogolides E (2012) Controlled protein adsorption on microfluidic channels with engineered roughness and wettability. Sens Actuators B Chem 161(1):216–222. doi: 10.1016/j.snb.2011.10.022 CrossRefGoogle Scholar
  15. 15.
    Battle KN, Jackson JM, Witek MA, Hupert ML, Hunsucker SA, Armistead PM, Soper SA (2014) Solid-phase extraction and purification of membrane proteins using a UV-modified PMMA microfluidic bioaffinity μSPE device. Analyst 139(6):1355–1363. doi: 10.1039/c3an02400h CrossRefGoogle Scholar
  16. 16.
    Mogi K, Sugii Y, Yamamoto T, Fujii T (2014) Rapid fabrication technique of nano/microfluidic device with high mechanical stability utilizing two-step soft lithography. Sens Actuators B Chem 201:407–412. doi: 10.1016/j.snb.2014.05.047 CrossRefGoogle Scholar
  17. 17.
    O’Connor RS, Hao X, Shen K, Bashour K, Akimova T, Hancock WW, Kam LC, Milone MC (2012) Substrate rigidity regulates human T cell activation and proliferation. J Immunol 189(3):1330–1339. doi: 10.4049/jimmunol.1102757 CrossRefGoogle Scholar
  18. 18.
    Zhou J, Ellis AV, Voelcker NH (2010) Recent developments in PDMS surface modification for microfluidic devices. Electrophoresis 31(1):2–16. doi: 10.1002/elps.200900475 CrossRefGoogle Scholar
  19. 19.
    Bartalena G, Loosli Y, Zambelli T, Snedeker JG (2012) Biomaterial surface modifications can dominate cell–substrate mechanics: the impact of PDMS plasma treatment on a quantitative assay of cell stiffness. Soft Matter 8:673. doi: 10.1039/c1sm06250f CrossRefGoogle Scholar
  20. 20.
    Zhang Y, Ren L, Tu Q, Wang X, Liu R, Li L, Wang JC, Liu W, Xu J, Wang J (2011) Fabrication of reversible poly(dimethylsiloxane) surfaces via host-guest chemistry and their repeated utilization in cardiac biomarker analysis. Anal Chem 83(24):9651–9659. doi: 10.1021/ac202517x CrossRefGoogle Scholar
  21. 21.
    Annabi N, Selimović Š, Acevedo Cox JP, Ribas J, Afshar Bakooshli M, Heintze D, Weiss AS, Cropek D, Khademhosseini A (2013) Hydrogel-coated microfluidic channels for cardiomyocyte culture. Lab Chip 13(18):3569–3577. doi: 10.1039/c3lc50252j CrossRefGoogle Scholar
  22. 22.
    Roy E, Galas JC, Veres T (2011) Thermoplastic elastomers for microfluidics: Towards a high-throughput fabrication method of multilayered microfluidic devices. Lab Chip 11(18):3193–3196. doi: 10.1039/c1lc20251k CrossRefGoogle Scholar
  23. 23.
    Rolland JP, Hagberg EC, Denison GM, Carter KR, De Simone JM (2004) High-resolution soft lithography: enabling materials for nanotechnologies. Angew Chem Int Ed 43(43):5796–5799. doi: 10.1002/anie.200461122 CrossRefGoogle Scholar
  24. 24.
    Song L, Zhao J, Yuan XY (2014) Strengthening of hydrogels based on polysaccharide and polypeptide. Prog Chem 26:385–393Google Scholar
  25. 25.
    Kharkar PM, Kiick KL, Kloxin AM (2013) Designing degradable hydrogels for orthogonal control of cell microenvironments. Chem Soc Rev 42(17):7335–7372. doi: 10.1039/c3cs60040h CrossRefGoogle Scholar
  26. 26.
    Guan Y, Zhang Y (2013) Boronic acid-containing hydrogels: synthesis and their applications. Chem Soc Rev 42(20):8106–8121. doi: 10.1039/c3cs60152h CrossRefGoogle Scholar
  27. 27.
    Seiffert S, Weitz DA (2010) Controlled fabrication of polymer microgels by polymer-analogous gelation in droplet microfluidics. Soft Matter 6:3184. doi: 10.1039/c0sm00071j CrossRefGoogle Scholar
  28. 28.
    Kothapalli CR, van Veen E, de Valence S, Chung S, Zervantonakis IK, Gertler FB, Kamm RD (2011) A high-throughput microfluidic assay to study neurite response to growth factor gradients. Lab Chip 11(3):497–507. doi: 10.1039/c0lc00240b CrossRefGoogle Scholar
  29. 29.
    Kang DH, Kim HN, Kim P, Suh KY (2014) Poly(ethylene glycol) (PEG) microwells in microfluidics: Fabrication methods and applications. BioChip J 8(4):241–253. doi: 10.1007/s13206-014-8401-y CrossRefGoogle Scholar
  30. 30.
    Pei Y, Wang X, Huang W, Liu P, Zhang L (2013) Cellulose-based hydrogels with excellent microstructural replication ability and cytocompatibility for microfluidic devices. Cellulose 20(4):1897–1909. doi: 10.1007/s10570-013-9930-6 CrossRefGoogle Scholar
  31. 31.
    Yu J, Ge L, Huang J, Wang S, Ge S (2011) Microfluidic paper-based chemiluminescence biosensor for simultaneous determination of glucose and uric acid. Lab Chip 11(7):1286–1291. doi: 10.1039/c0lc00524j CrossRefGoogle Scholar
  32. 32.
    Liu F, Wang S, Zhang M, Wang Y, Ge S, Yu J, Yan M (2014) Aptamer based test stripe for ultrasensitive detection of mercury(II) using a phenylene-ethynylene reagent on nanoporous silver as a chemiluminescence reagent. Microchim Acta 181(5–6):663–670. doi: 10.1007/s00604-014-1171-3 CrossRefGoogle Scholar
  33. 33.
    He Q, Ma C, Hu X, Chen H (2013) Method for fabrication of paper-based microfluidic devices by alkylsilane self-assembling and UV/O3-patterning. Anal Chem 85(3):1327–1331. doi: 10.1021/ac303138x CrossRefGoogle Scholar
  34. 34.
    Mu X, Zhang L, Chang S, Cui W, Zheng Z (2014) Multiplex microfluidic paper-based immunoassay for the diagnosis of hepatitis C virus infection. Anal Chem 86(11):5338–5344. doi: 10.1021/ac500247f CrossRefGoogle Scholar
  35. 35.
    Thuo MM, Martinez RV, Lan W, Liu X, Barber J (2014) Fabrication of low-cost paper-based microfluidic devices by embossing or cut-and-stack methods. Chem Mater 26(14):4230–4237. doi: 10.1021/cm501596s CrossRefGoogle Scholar
  36. 36.
    Larsen EK, Larsen NB (2013) One-step polymer surface modification for minimizing drug, protein, and DNA adsorption in microanalytical systems. Lab Chip 13(4):669–675. doi: 10.1039/C2LC40750G CrossRefGoogle Scholar
  37. 37.
    Wu D, Zhao B, Dai Z, Qin J, Lin B (2006) Grafting epoxy-modified hydrophilic polymers onto poly(dimethylsiloxane) microfluidic chip to resist nonspecific protein adsorption. Lab Chip 6(7):942–947. doi: 10.1039/b600765a CrossRefGoogle Scholar
  38. 38.
    Vu TT, Fouet M, Gue AM, Sudor J (2014) A new and easy surface functionalization technnology for monitoring wettability in heterogeneous nano-and microfluidic devices. Sens Actuators B Chem 196:64–70. doi: 10.1016/j.snb.2014.01.085 CrossRefGoogle Scholar
  39. 39.
    Bodas D, Khan-Malek C (2007) Hydrophilization and hydrophobic recovery of PDMS by oxygen plasma and chemical treatment-An SEM investigation. S Sens Actuators B Chem 123(1):368–373. doi: 10.1016/j.snb.2006.08.037 CrossRefGoogle Scholar
  40. 40.
    Kuddannaya S, Chuah Y (2013) Surface chemical modification of poly (dimethylsiloxane) for the enhanced adhesion and proliferation of mesenchymal stem cells. ACS Appl Mater Interfaces 5(19):9777–9784. doi: 10.1021/am402903e CrossRefGoogle Scholar
  41. 41.
    Sun T, Wang G, Feng L, Liu B, Ma Y, Jiang L, Zhu D (2004) Reversible Switching between Superhydrophilicity and Superhydrophobicity. Angew Chem Int Ed 116(3):361–364. doi: 10.1002/anie.200352565 CrossRefGoogle Scholar
  42. 42.
    Jung YD, Khan M, Park SY (2014) Fabrication of temperature- and pH-sensitive liquid-crystal droplets with PNIPAM-b-LCP and SDS coatings by microfluidics. J Mater Chem B 2(30):4922–4928. doi: 10.1039/C4TB00476K CrossRefGoogle Scholar
  43. 43.
    Sun T, Qing G (2011) Biomimetic smart interface materials for biological applications. Adv Mater 23(12):H57–H77. doi: 10.1002/adma.201004326 CrossRefGoogle Scholar
  44. 44.
    Sun T, Song W, Jiang L (2005) Control over the responsive wettability of poly(N-isopropylacrylamide) film in a large extent by introducing an irresponsive molecule. Chem Commun 13:1723–1725. doi: 10.1039/b417670g CrossRefGoogle Scholar
  45. 45.
    Schmidt S, Zeiser M, Hellweg T, Duschl C, Fery A, Möhwald H (2010) Adhesion and mechanical properties of PNIPAM microgel films and their potential use as switchable cell culture substrates. Adv Funct Mater 20:3235–3243. doi: 10.1002/adfm.201000730 CrossRefGoogle Scholar
  46. 46.
    Wylie RG, Ahsan S, Aizawa Y, Maxwell KL, Morshead CM, Shoichet MS (2011) Spatially controlled simultaneous patterning of multiple growth factors in three-dimensional hydrogels. Nat Mater 10(10):799–806. doi: 10.1038/nmat3101 CrossRefGoogle Scholar
  47. 47.
    Caron MM, Emans PJ, Coolsen MM, Voss L, Surtel DA, Cremers A, van Rhijn LW, Welting TJ (2012) Redifferentiation of dedifferentiated human articular chondrocytes: Comparison of 2D and 3D cultures. Osteoarthritis Cartilage 20(10):1170–1178. doi: 10.1016/j.joca.2012.06.016 CrossRefGoogle Scholar
  48. 48.
    Yoshii Y, Waki A, Yoshida K, Kakezuka A, Kobayashi M, Namiki H, Kuroda Y, Kiyono Y, Yoshii H, Furukawa T, Asai T, Okazawa H, Gelovani JG, Fujibayashi Y (2011) The use of nanoimprinted scaffolds as 3D culture models to facilitate spontaneous tumor cell migration and well-regulated spheroid formation. Biomaterials 32(26):6052–6058. doi: 10.1016/j.biomaterials.2011.04.076 CrossRefGoogle Scholar
  49. 49.
    Kang E, Choi YY, Jun Y, Chung BG, Lee SH (2010) Development of a multi-layer microfluidic array chip to culture and replate uniform-sized embryoid bodies without manual cell retrieval. Lab Chip 10(20):2651–2654. doi: 10.1039/c0lc00005a CrossRefGoogle Scholar
  50. 50.
    Wu J, Chen Q, Liu W, Zhang Y, Lin JM (2012) Cytotoxicity of quantum dots assay on a microfluidic 3D-culture device based on modeling diffusion process between blood vessels and tissues. Lab Chip 12(18):3474–3480. doi: 10.1039/c2lc40502d CrossRefGoogle Scholar
  51. 51.
    Chen Q, Wu J, Zhuang Q, Lin X, Zhang J, Lin JM (2013) Microfluidic isolation of highly pure embryonic stem cells using feeder-separated co-culture system. Sci Rep 3:2433. doi: 10.1038/srep02433 CrossRefGoogle Scholar
  52. 52.
    Leipzig ND, Wylie RG, Kim H, Shoichet MS (2011) Differentiation of neural stem cells in three-dimensional growth factor-immobilized chitosan hydrogel scaffolds. Biomaterials 32(1):57–64. doi: 10.1016/j.biomaterials.2010.09.031 CrossRefGoogle Scholar
  53. 53.
    Sapir Y, Kryukov O, Cohen S (2011) Integration of multiple cell-matrix interactions into alginate scaffolds for promoting cardiac tissue regeneration. Biomaterials 32(7):1838–1847. doi: 10.1016/j.biomaterials.2010.11.008 CrossRefGoogle Scholar
  54. 54.
    Mack PJ, Zhang Y, Chung S, Vickerman V, Kamm RD, García-Cardeña G (2009) Biomechanical regulation of endothelium-dependent events critical for adaptive remodeling. J Biol Chem 284(13):8412–8420. doi: 10.1074/jbc.M804524200 CrossRefGoogle Scholar
  55. 55.
    Chung S, Sudo R, Zervantonakis IK, Rimchala T, Kamm RD (2009) Surface-treatment-induced three-dimensional capillary morphogenesis in a microfluidic platform. Adv Mater 21(47):4863–4867. doi: 10.1002/adma.200901727 CrossRefGoogle Scholar
  56. 56.
    Shin Y, Han S, Jeon JS, Yamamoto K, Zervantonakis IK, Sudo R, Kamm RD, Chung S (2012) Microfluidic assay for simultaneous culture of multiple cell types on surfaces or within hydrogels. Nat Protoc 7(7):1247–1259. doi: 10.1038/nprot.2012.051 CrossRefGoogle Scholar
  57. 57.
    Kim C, Chung S, Yuchun L, Kim M-C, Chan JKY, Asada HH, Kamm RD (2012) In vitro angiogenesis assay for the study of cell-encapsulation therapy. Lab Chip 12(16):2942–2950. doi: 10.1039/C2LC40182G CrossRefGoogle Scholar
  58. 58.
    Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50(24):5438–5466. doi: 10.1002/anie.201001273 CrossRefGoogle Scholar
  59. 59.
    Gea S, Reynolds CT, Roohpour N, Wirjosentono B, Soykeabkaew N, Bilotti E, Peijs T (2011) Investigation into the structural, morphological, mechanical and thermal behaviour of bacterial cellulose after a two-step purification process. Bioresour Technol 102(19):9105–9110. doi: 10.1016/j.biortech.2011.04.077 CrossRefGoogle Scholar
  60. 60.
    Nwe N, Furuike T, Tamura H (2010) Selection of a biopolymer based on attachment, morphology and proliferation of fibroblast NIH/3T3 cells for the development of a biodegradable tissue regeneration template: Alginate, bacterial cellulose and gelatin. Process Biochem 45(4):457–466. doi: 10.1016/j.procbio.2009.11.002 CrossRefGoogle Scholar
  61. 61.
    Fu L, Zhang J, Yang G (2013) Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohydr Polym 92(2):1432–1442. doi: 10.1016/j.carbpol.2012.10.071 CrossRefGoogle Scholar
  62. 62.
    Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3(1):71–85. doi: 10.1039/c0nr00583e CrossRefGoogle Scholar
  63. 63.
    Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polym J 59:302–325. doi: 10.1016/j.eurpolymj.2014.07.025 CrossRefGoogle Scholar
  64. 64.
    Bhattacharya M, Malinen MM, Lauren P, Lou YR, Kuisma SW, Kanninen L, Lille M, Corlu A, Guguen-Guillouzo C, Ikkala O, Laukkanen A, Urtti A, Yliperttula M (2012) Nanofibrillar cellulose hydrogel promotes three-dimensional liver cell culture. J Control Release 164(3):291–298. doi: 10.1016/j.jconrel.2012.06.039 CrossRefGoogle Scholar
  65. 65.
    Torres-Rendon JG, Femmer T, De Laporte L, Tigges T, Rahimi K, Gremse F, Zafarnia S, Lederle W, Ifuku S, Wessling M, Hardy JG, Walther A (2015) Bioactive gyroid scaffolds formed by sacrificial templating of nanocellulose and nanochitin hydrogels as instructive platforms for biomimetic tissue engineering. Adv Mater 27(19):2989–2995. doi: 10.1002/adma.201405873 CrossRefGoogle Scholar
  66. 66.
    Mo X, Li Q, Yi Lui LW, Zheng B, Kang CH, Nugraha B, Yue Z, Jia RR, Fu HX, Choudhury D, Arooz T, Yan J, Lim CT, Shen S, Hong Tan C, Yu H (2010) Rapid construction of mechanically-confined multi-cellular structures using dendrimeric intercellular linker. Biomaterials 31(29):7455–7467. doi: 10.1016/j.biomaterials.2010.06.020 CrossRefGoogle Scholar
  67. 67.
    Luo Y, Wang C, Hossain M, Qiao Y, Ma L, An J, Su M (2012) Three-dimensional microtissue assay for high-throughput cytotoxicity of nanoparticles. Anal Chem 84(15):6731–6738. doi: 10.1021/ac301191j CrossRefGoogle Scholar
  68. 68.
    Chandrasekaran S, Giang UB, King MR, DeLouise LA (2011) Microenvironment induced spheroid to sheeting transition of immortalized human keratinocytes (HaCaT) cultured in microbubbles formed in polydimethylsiloxane. Biomaterials 32(29):7159–7168. doi: 10.1016/j.biomaterials.2011.06.013 CrossRefGoogle Scholar
  69. 69.
    Liu T, Winter M, Thierry B (2014) Quasi-spherical microwells on superhydrophobic substrates for long term culture of multicellular spheroids and high throughput assays. Biomaterials 35(23):6060–6068. doi: 10.1016/j.biomaterials.2014.04.047 CrossRefGoogle Scholar
  70. 70.
    Hong S, Pan Q, Lee LP (2012) Single-cell level co-culture platform for intercellular communication. Integr Biol 4(4):374–380. doi: 10.1039/c2ib00166g CrossRefGoogle Scholar
  71. 71.
    Henrich D, Wilhelm K, Warzecha J, Frank J, Barker J, Marzi I, Seebach C (2013) Human endothelial-like differentiated precursor cells maintain their endothelial characteristics when cocultured with mesenchymal stem cell and seeded onto human cancellous bone. Mediators Inflamm 2013:364591. doi: 10.1155/2013/364591 CrossRefGoogle Scholar
  72. 72.
    Huh D, Matthews BD, Mammoto A, Hsin HY, Ingber DE (2010) Reconstituting organ-level lung functions on a chip. Science 328(5986):1662–1668. doi: 10.1126/science.1188302 CrossRefGoogle Scholar
  73. 73.
    Agarwal A, Goss JA, Cho A, McCain ML, Parker KK (2013) Microfluidic heart on a chip for higher throughput pharmacological studies. Lab Chip 13(18):3599–3608. doi: 10.1039/C3LC50350J CrossRefGoogle Scholar
  74. 74.
    Booth R, Kim H (2012) Characterization of a microfluidic in vitro model of the blood-brain barrier (μBBB). Lab Chip 12(10):1784–1792. doi: 10.1039/c2lc40094d CrossRefGoogle Scholar
  75. 75.
    Alessandri K, Sarangi BR, Gurchenkov VV, Sinha B, Kießling TR, Fetler L, Rico F, Scheuring S, Lamaze C, Simon A, Geraldo S, Vignjevic D, Doméjean H, Rolland L, Funfak A, Bibette J, Bremond N, Nassoy P (2013) Cellular capsules as a tool for multicellular spheroid production and for investigating the mechanics of tumor progression in vitro. Proc Natl Acad Sci U S A 110(37):14843–14848. doi: 10.1073/pnas.1309482110 CrossRefGoogle Scholar
  76. 76.
    Onoe H, Okitsu T, Itou A, Kato-Negishi M, Gojo R, Kiriya D, Sato K, Miura S, Iwanaga S, Kuribayashi-Shigetomi K, Matsunaga YT, Shimoyama Y, Takeuchi S (2013) Metre-long cell-laden microfibres exhibit tissue morphologies and functions. Nat Mater 12(6):584–590. doi: 10.1038/nmat3606 CrossRefGoogle Scholar
  77. 77.
    Lee SA, No DY, Kang E, Ju J, Kim DS, Lee SH (2013) Spheroid-based three-dimensional liver-on-a-chip to investigate hepatocyte-hepatic stellate cell interactions and flow effects. Lab Chip 13(18):3529–3537. doi: 10.1039/c3lc50197c CrossRefGoogle Scholar
  78. 78.
    Gao D, Liu H, Jiang Y, Lin JM, Gao D, Liu H, Jiang Y (2012) Recent developments in microfluidic devices for in vitro cell culture for cell-biology research. Trends Analyt Chem 35:150–164. doi: 10.1016/j.trac.2012.02.008 CrossRefGoogle Scholar
  79. 79.
    Jeon NL, Dertinger SKW, Chiu DT, Choi IS, Stroock AD, Whitesides GM (2000) Generation of solution and surface gradients using microfluidic systems. Langmuir 16(22):8311–8316. doi: 10.1021/la000600b CrossRefGoogle Scholar
  80. 80.
    Toh AGG, Wang ZP, Yang C, Nguyen NT (2014) Engineering microfluidic concentration gradient generators for biological applications. Microfluid Nanofluid 16(1–2):1–18. doi: 10.1007/s10404-013-1236-3 CrossRefGoogle Scholar
  81. 81.
    Gao D, Li H, Wang N, Lin JM (2012) Evaluation of the absorption of methotrexate on cells and its cytotoxicity assay by using an integrated microfluidic device coupled to a mass spectrometer. Anal Chem 84(21):9230–9237. doi: 10.1021/ac301966c Google Scholar
  82. 82.
    Chen Q, Wu J, Zhang Y, Lin JM (2012) Qualitative and quantitative analysis of tumor cell metabolism via stable isotope labeling assisted microfluidic chip electrospray ionization mass spectrometry. Anal Chem 84(3):1695–1701. doi: 10.1021/ac300003k CrossRefGoogle Scholar
  83. 83.
    Scherber C, Aranyosi AJ, Kulemann B, Thayer SP, Toner M, Iliopoulos O, Irimia D (2012) Epithelial cell guidance by self-generated EGF gradients. Integr Biol 4(3):259–269. doi: 10.1039/c2ib00106c CrossRefGoogle Scholar
  84. 84.
    Byrne MB, Leslie MT, Gaskins HR, Kenis PJA (2014) Methods to study the tumor microenvironment under controlled oxygen conditions. Trends Biotechnol 32(11):556–563. doi: 10.1016/j.tibtech.2014.09.006 CrossRefGoogle Scholar
  85. 85.
    Wang L, Liu W, Wang Y, Wang J, Tu Q, Liu R, Wang J (2013) Construction of oxygen and chemical concentration gradients in a single microfluidic device for studying tumor cell-drug interactions in a dynamic hypoxia microenvironment. Lab Chip 13(4):695–705. doi: 10.1039/c2lc40661f CrossRefGoogle Scholar
  86. 86.
    Lin X, Chen Q, Liu W, Zhang J, Wang S, Lin Z, Lin JM (2015) Oxygen-induced cell migration and on-line monitoring biomarkers modulation of cervical cancers on a microfluidic system. Sci Rep 5:9643. doi: 10.1038/srep09643 CrossRefGoogle Scholar
  87. 87.
    Rosso F, Giordano A, Barbarisi M, Barbarisi A (2004) From cell-ECM interactions to tissue engineering. J Cell Physiol 199(2):174–180. doi: 10.1002/jcp.10471 CrossRefGoogle Scholar
  88. 88.
    Wu J, Chen Q, Liu W, Lin JM (2013) A simple and versatile microfluidic cell density gradient generator for quantum dot cytotoxicity assay. Lab Chip 13(10):1948–1954. doi: 10.1039/c3lc00041a CrossRefGoogle Scholar
  89. 89.
    Wu C, Asokan SB, Berginski ME, Haynes EM, Sharpless NE, Griffith JD, Gomez SM, Bear JE (2012) Arp2/3 is critical for lamellipodia and response to extracellular matrix cues but is dispensable for chemotaxis. Cell 148(5):973–987. doi: 10.1016/j.cell.2011.12.034 CrossRefGoogle Scholar
  90. 90.
    Sun YS, Peng SW, Cheng JY (2012) In vitro electrical-stimulated wound-healing chip for studying electric field-assisted wound-healing process. Biomicrofluidics 6(3):034117. doi: 10.1063/1.4750486 CrossRefGoogle Scholar
  91. 91.
    Tong Z, Cheung LS, Stebe KJ, Konstantopoulos K (2012) Selectin-mediated adhesion in shear flow using micropatterned substrates: multiple-bond interactions govern the critical length for cell binding. Integr Biol 4(8):847–856. doi: 10.1039/c2ib20036h CrossRefGoogle Scholar
  92. 92.
    Przybyla LM, Voldman J (2012) Attenuation of extrinsic signaling reveals the importance of matrix remodeling on maintenance of embryonic stem cell self-renewal. Proc Natl Acad Sci U S A 109(3):835–840. doi: 10.1073/pnas.1103100109 CrossRefGoogle Scholar
  93. 93.
    Moledina F, Clarke G, Oskooei A, Onishi K, Günther A, Zandstra PW (2012) Predictive microfluidic control of regulatory ligand trajectories in individual pluripotent cells. Proc Natl Acad Sci U S A 109(9):3264–3269. doi: 10.1073/pnas.1111478109 CrossRefGoogle Scholar
  94. 94.
    Lin HK, Zheng S, Williams AJ, Balic M, Groshen S, Scher HI, Fleisher M, Stadler W, Datar RH, Tai YC, Cote RJ (2010) Portable filter-based microdevice for detection and characterization of circulating tumor cells. Clin Cancer Res 16(20):5011–5018. doi: 10.1158/1078-0432.CCR-10-1105 CrossRefGoogle Scholar
  95. 95.
    Gao D, Liu J, Bin Wei H, Li HF, Guo GS, Lin JM (2010) A microfluidic approach for anticancer drug analysis based on hydrogel encapsulated tumor cells. Anal Chim Acta 665(1):7–14. doi: 10.1016/j.aca.2010.03.015 CrossRefGoogle Scholar
  96. 96.
    Biju V (2014) Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem Soc Rev 43(3):744–764. doi: 10.1039/C3CS60273G CrossRefGoogle Scholar
  97. 97.
    Li Q, Liu L, Liu JW, Jiang JH, Yu RQ, Chu X (2014) Nanomaterial-based fluorescent probes for live-cell imaging. TrAC—Trends Anal Chem 58:130–144. doi: 10.1016/j.trac.2014.03.007 CrossRefGoogle Scholar
  98. 98.
    Lee JW, Lee S, Jang S, Han KY, Kim Y, Hyun J, Kim SK, Lee Y (2013) Preparation of non-aggregated fluorescent nanodiamonds (FNDs) by non-covalent coating with a block copolymer and proteins for enhancement of intracellular uptake. Mol BioSyst 9(5):1004–1011. doi: 10.1039/C2MB25431J CrossRefGoogle Scholar
  99. 99.
    Hua X, Zhou Z, Yuan L, Liu S (2013) Selective collection and detection of MCF-7 breast cancer cells using aptamer-functionalized magnetic beads and quantum dots based nano-bio-probes. Anal Chim Acta 788:135–140. doi: 10.1016/j.aca.2013.06.001 CrossRefGoogle Scholar
  100. 100.
    Yang D, Dai Y, Ma P, Kang X, Cheng Z, Li C, Lin J (2013) One-step synthesis of small-sized and water-soluble NaREF4 upconversion nanoparticles for in vitro cell imaging and drug delivery. Chem Eur J 19(8):2685–2694. doi: 10.1002/chem.201203634 CrossRefGoogle Scholar
  101. 101.
    Zheng C, Zheng M, Gong P, Jia D, Zhang P, Shi B, Sheng Z, Ma Y, Cai L (2012) Indocyanine green-loaded biodegradable tumor targeting nanoprobes for in vitro and in vivo imaging. Biomaterials 33(22):5603–5609. doi: 10.1016/j.biomaterials.2012.04.044 CrossRefGoogle Scholar
  102. 102.
    Gao D, Liu H, Lin J-M, Wang Y, Jiang Y (2013) Characterization of drug permeability in Caco-2 monolayers by mass spectrometry on a membrane-based microfluidic device. Lab Chip 13(5):978–985. doi: 10.1039/c2lc41215b CrossRefGoogle Scholar
  103. 103.
    Lin L, Chen H, Wei H, Wang F, Lin JM (2011) On-chip sample pretreatment using a porous polymer monolithic column for solid-phase microextraction and chemiluminescence determination of catechins in green tea. Analyst 136(20):4260–4267. doi: 10.1039/c1an15530j CrossRefGoogle Scholar
  104. 104.
    Lin L, Gao Z, Wei H, Li H, Wang F, Lin JM (2011) Fabrication of a gel particle array in a microfluidic device for bioassays of protein and glucose in human urine samples. Biomicrofluidics 5(3):034112–3411210. doi: 10.1063/1.3623412 CrossRefGoogle Scholar
  105. 105.
    Yu Z, Huang Y (2015) Sample preparation for single cell sequencing on integrated micro-fluidic devices. Sci Sin Chim 45(11):1090–1101. doi: 10.1360/N032015-00100 CrossRefGoogle Scholar
  106. 106.
    Chen Q, Wu J, Zhang Y, Lin Z, Lin JM (2012) Targeted isolation and analysis of single tumor cells with aptamer-encoded microwell array on microfluidic device. Lab Chip 12(24):5180–5185. doi: 10.1039/c2lc40858a CrossRefGoogle Scholar
  107. 107.
    Liu C, Liu J, Gao D, Ding M, Lin JM (2010) Fabrication of microwell arrays based on two-dimensional ordered polystyrene microspheres for high-throughput single-cell analysis. Anal Chem 82(22):9418–9424. doi: 10.1021/ac102094r CrossRefGoogle Scholar
  108. 108.
    Wei H, Chueh B, Wu H, Hall EW, Li C, Schirhagl R, Lin JM, Zare RN (2011) Particle sorting using a porous membrane in a microfluidic device. Lab Chip 11(2):238–245. doi: 10.1039/C0LC00121J CrossRefGoogle Scholar
  109. 109.
    Wu J, Li H, Chen Q, Lin X, Liu W, Lin J-M (2014) Statistical single-cell analysis of cell cycle-dependent quantum dot cytotoxicity and cellular uptake using a microfluidic system. RSC Adv 4(47):24929–24934. doi: 10.1039/c4ra01665c CrossRefGoogle Scholar
  110. 110.
    Mach AJ, Kim JH, Arshi A, Hur SC, Di Carlo D (2011) Automated cellular sample preparation using a Centrifuge-on-a-Chip. Lab Chip 11(17):2827–2834. doi: 10.1039/C1LC20330D CrossRefGoogle Scholar
  111. 111.
    Wang BL, Ghaderi A, Zhou H, Agresti J, Weitz DA, Fink GR, Stephanopoulos G (2014) Microfluidic high-throughput culturing of single cells for selection based on extracellular metabolite production or consumption. Nat Biotechonl 32(5):473–478. doi: 10.1038/nbt.2857 CrossRefGoogle Scholar
  112. 112.
    Lin X, Leung KH, Lin L, Lin L, Lin S, Leung CH, Ma DL, Lin JM (2016) Determination of cell metabolite VEGF165 and dynamic analysis of protein-DNA interactions by combination of microfluidic technique and luminescent switch-on probe. Biosens Bioelectron 79:41–47. doi: 10.1016/j.bios.2015.11.089 CrossRefGoogle Scholar
  113. 113.
    Su WT, Feng K, Qin JH (2015) Progress of Microfluidics-based immunoassays in detection of cardiac markers. Chin J Anal Chem 43(10):1490–1498. doi: 10.11895/j.issn.0253-3820.150440 Google Scholar
  114. 114.
    Lin X, Wu J, Li H, Wang Z, Lin JM (2013) Determination of mini-short tandem repeat (miniSTR) loci by using the combination of polymerase chain reaction (PCR) and microchip electrophoresis. Talanta 114:131–137. doi: 10.1016/j.talanta.2013.04.012 CrossRefGoogle Scholar
  115. 115.
    Yi L, Xu X, Lin X, Li H, Ma Y, Lin JM (2014) High-throughput and automatic typing via human papillomavirus identification map for cervical cancer screening and prognosis. Analyst 139(13):3330–3335. doi: 10.1039/c4an00329b CrossRefGoogle Scholar
  116. 116.
    He X, Chen Q, Zhang Y, Lin JM (2014) Recent advances in microchip-mass spectrometry for biological analysis. Trends Anal Chem 53:84–97. doi: 10.1016/j.trac.2013.09.013 CrossRefGoogle Scholar
  117. 117.
    Li H, Zhang Y, Lin JM (2014) Recent advances in coupling techniques of microfluidic device-mass spectrometry for cell analysis. Sci Sin Chim 44(5):777–783. doi: 10.1360/N032014-00007 CrossRefGoogle Scholar
  118. 118.
    Gao D, Wei H, Guo G-S, Lin JM (2010) Microfluidic cell culture and metabolism detection with electrospray ionization quadrupole time-of-flight mass spectrometer. Anal Chem 82(13):5679–5685. doi: 10.1021/ac101370p CrossRefGoogle Scholar
  119. 119.
    Luo C, Ma Y, Li H, Chen F, Uchiyama K, Lin JM (2013) Generation of picoliter droplets of liquid for electrospray ionization with piezoelectric inkjet. J Mass Spectrom 48(3):321–328. doi: 10.1002/jms.3159 CrossRefGoogle Scholar
  120. 120.
    Liu W, Chen Q, Lin X, Lin JM (2015) Online multi-channel microfluidic chip-mass spectrometry and its application for quantifying noncovalent protein–protein interactions. Analyst 140(5):1551–1554. doi: 10.1039/c4an02370f CrossRefGoogle Scholar
  121. 121.
    Zhang Y, Li H, Ma Y, Lin J (2014) Lipid profiling of mammalian cells with in situ matrix-assisted laser desorption ionization-mass spectrometry. Sci Chin Chem 57(3):442–446. doi: 10.1007/s11426-013-4960-3 CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of ChemistryTsinghua UniversityBeijingPeople’s Republic of China

Personalised recommendations