Skip to main content

The Power M-Gaussian Distribution: An R-Symmetric Analog of the Exponential-Power Distribution

  • Chapter
  • First Online:
  • 624 Accesses

Abstract

The mode-centric M-Gaussian distribution, which may be considered a fraternal twin of the Gaussian distribution, is an attractive alternative for modeling non-negative, unimodal data, which are often right-skewed. In this paper, we aim to expand upon the existing theory and utility of R-symmetric distributions by introducing a three-parameter generalization of the M-Gaussian distribution, namely the Power M-Gaussian distribution. The basic distributional character of this R-symmetric analog of the exponential-power distribution will be studied extensively. Estimation of the mode, dispersion, and kurtosis parameters will be developed based on both moments and maximum likelihood methods. Simulation and real data examples will be used to evaluate the model.

This is a preview of subscription content, log in via an institution.

References

  1. Awadalla, S.S. 2012. Some contributions to the theory and applications of R-symmetry. Ph.D. thesis, Department of Computational Biology, University of Rochester, Rochester, NY, USA.

    Google Scholar 

  2. Baker, R. 2008. Probabilistic applications of the Schlömilch transformation. Communications in Statistics - Theory and Methods. 37: 2162–2176.

    Article  MathSciNet  MATH  Google Scholar 

  3. Box, G.E.P. 1953. A note on regions for tests of kurtosis. Biometrika 40: 465–468.

    Article  MathSciNet  MATH  Google Scholar 

  4. Box, G.E.P., G.C. Tiao. 1973. Bayesian inference in statistical analysis. Wiley Online Library.

    Google Scholar 

  5. Broyden, C.G. 1970. The convergence of a class of double-rank minimization algorithms 1. general considerations. IMA Journal of Applied Mathematics 6: 76–90.

    Article  MATH  Google Scholar 

  6. Chaubey, Y.P., G.S. Mudholkar, and M.C. Jones. 2010. Reciprocal symmetry, unimodality and Khintchine’s theorem. Proceedings of the Royal Society of London A 466: 2079–2096.

    Article  MathSciNet  MATH  Google Scholar 

  7. Diananda, P.H. 1949. Note on some properties of maximum likelihood estimates. Mathematical Proceedings of the Cambridge Philosophical Society 45: 536–544.

    Article  MathSciNet  MATH  Google Scholar 

  8. Fletcher, R. 1970. A new approach to variable metric algorithms. The Computer Journal 13: 317–322.

    Article  MATH  Google Scholar 

  9. Folks, J.L., and R.S. Chhikara. 1978. The inverse Gaussian distribution and its statistical application—a review. Journal of the Royal Statistical Society Series B 40: 263–289.

    MathSciNet  MATH  Google Scholar 

  10. Goldfarb, D. 1970. A family of variable metric methods derived by variational means. Mathematics of Computation 24: 23–26.

    Article  MathSciNet  MATH  Google Scholar 

  11. Gradshtein, I.S., I.M. Ryzhik. 2007. Table of integrals, series and products, 7th ed. Academic Press.

    Google Scholar 

  12. Jones, M.C. 2010. Distributions generated by transformations of scale using an extended Schlomilch transformation. Sankhya A: The Indian Journal of Statistics 72: 359–375.

    Article  MathSciNet  MATH  Google Scholar 

  13. Jones, M.C. 2012. Relationships between distributions with certain symmetries. Statistical and Probability Letters 82: 1737–1744.

    Article  MathSciNet  MATH  Google Scholar 

  14. Jones, M.C., and B.C. Arnold. 2012. Distributions that are both log-symmetric and R-symmetric. Electronic Journal of Statistics 2: 1300–1308.

    Article  MathSciNet  MATH  Google Scholar 

  15. Khintchine, A.Y. 1938. On unimodal distributions. Izvestiya Nauchno-Issledovatel’skogo Instituta Matematiki i Mekhaniki 2: 1–7.

    Google Scholar 

  16. Lange, T.R., H.E. Royals, and L.L. Connor. 1993. Influence of water chemistry on mercury concentration in largemouth bass from Florida lakes. Transactions of the American Fisheries Society 122: 74–84.

    Article  Google Scholar 

  17. Mineo, A.M., and M. Ruggieri. 2005. A software tool for the exponential power distribution: The normalp package. Journal of Statistical Software 12 (4): 1–24.

    Article  Google Scholar 

  18. Mudholkar, G.S., and H. Wang. 2007. IG-symmetry and R-symmetry: Interrelations and applications to the inverse Gaussian theory. Journal of Statistical Planning and Inference 137: 3655–3671.

    Article  MathSciNet  MATH  Google Scholar 

  19. Mudholkar, G.S., and H. Wang. 2007. Product-Convolution of R-symmetric unimodal distributions: An analogue to Wintner’s Theorem. Journal of Statistical Theory and Practice 4: 803–811.

    Article  MathSciNet  Google Scholar 

  20. Mudholkar, G.S., Z. Yu, and S.S. Awadalla. 2015. The mode-centric M-Gaussian distribution: A model for right skewed data. Statistics & Probability Letters 107: 1–10.

    Article  MathSciNet  MATH  Google Scholar 

  21. Seshadri, V. 1994. The Inverse Gaussian distribution: A case study in exponential families. Oxford University Press.

    Google Scholar 

  22. Seshadri, V. 1999. The inverse Gaussian distribution: Statistical theory and applications. Springer.

    Google Scholar 

  23. Shanno, D.F. 1970. Conditioning of quasi-Newton methods for function minimization. Mathematics of Computation 24: 647–656.

    Article  MathSciNet  MATH  Google Scholar 

  24. Subbotin, M.T. 1923. On the law of frequency of error. Matematicheskii Sbornik 31 (2): 296–301.

    MATH  Google Scholar 

  25. Turner, M.E. 1960. 150. Note: On heuristic estimation methods. Biometrics. 16: 299–301.

    Google Scholar 

  26. Tweedie, M.C.K. 1947. Functions of a statistical variate with given means, with special reference to Laplacian distributions. Mathematical Proceedings of the Cambridge Philosophical Society 43: 41–49.

    Article  MathSciNet  MATH  Google Scholar 

  27. Watson, G.N. 1958. A treatise on the theory of Bessel functions. Cambridge Press.

    Google Scholar 

  28. Wintner, A. 1938. Asymptotic distributions and infinite convolutions. Edwards Brothers.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saria Salah Awadalla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Awadalla, S.S., Mudholkar, G.S., Yu, Z. (2017). The Power M-Gaussian Distribution: An R-Symmetric Analog of the Exponential-Power Distribution. In: Adhikari, A., Adhikari, M., Chaubey, Y. (eds) Mathematical and Statistical Applications in Life Sciences and Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-5370-2_6

Download citation

Publish with us

Policies and ethics