A Transformation for the Analysis of Unimodal Hazard Rate Lifetimes Data

  • Kobby Asubonteng
  • Govind S. Mudholkar
  • Alan Hutson


The family of distributions introduced by [34] is the best known, best understood, most extensively investigated, and commonly employed model used for lifetimes data analysis. A variety of software packages are available to simplify its use. Yet, as is well known, the model is appropriate only when the hazard rate is monotone. However, as suggested in an overview by [23], the software packages may be usefully employed by transforming data when exploratory tools such as TTT transform or nonparametric estimates indicate unimodal, bathtub or J-shaped hazard rates, which are also commonly encountered in practice. Mudholkar et al. [22] discussed the details of one such transformation relevant for the bathtub case. In this paper, specifics of another transformation which is appropriate when data exploration indicates a unimodal hazard rate is discussed. The details of parameter estimation and hypothesis testing are considered in conjunction with earlier alternatives and illustrated using examples from the fields of biological extremes and finance.


Weibull distribution Exponentiated Weibull Generalized Weibull Lifetimes data Maximum likelihood Transformation 


62F03 62F10 62P20 62P20 


  1. 1.
    Aarset, M.V. 1987. How to identify bathtub hazard rate. IEEE Transactions on Reliability 36: 106–108.CrossRefMATHGoogle Scholar
  2. 2.
    Balakrishnan, N., and C.R. Rao. 2004. Advances in survival analysis. Handbook of statistics, vol. 23. Amsterdam: North-Holland.Google Scholar
  3. 3.
    Bartlett, M.S. 1947. The use of transformations. Biometrics 3: 39–52.MathSciNetCrossRefGoogle Scholar
  4. 4.
    Box, G.E.P., and D.R. Cox. 1964. An analysis of transformations. Journal of the Royal Statistical Society, Series B 26: 211–243.MathSciNetMATHGoogle Scholar
  5. 5.
    Cox, D.R., and D. Oakes. 1984. Analysis of survival data. London: Chapman & Hall.Google Scholar
  6. 6.
    Cox, D.R., and D.V. Hinkley. 1974. Theoretical statistics. London: Chapman & Hall.CrossRefMATHGoogle Scholar
  7. 7.
    Diciccio, T.J., and J.P. Romano. 1988. A review of bootstrap confidence intervals. Journal of Royal Statistical Society B 50: 338–354.MathSciNetMATHGoogle Scholar
  8. 8.
    Efron, B. 1987. Better bootstrap confidence intervals. Journal of the American Statistical Association 82: 171–185.MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Efron, B. 1988. Logistic regression, survival analysis and the Kaplan-Meier curve. Journal of the American Statistical Association 83: 414–425.MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Fisher, R.A. 1915. Frequency distribution of the values of the correlation coefficient in samples of an indefinitely large population. Biometrika 10: 507–521.Google Scholar
  11. 11.
    Harman, Y.S., and T.W. Zuehlke. 2007. Nonlinear duration dependence in stock market cycles. Review of Financial Economics 16: 350–362.CrossRefGoogle Scholar
  12. 12.
    Heckman, J.J., and S. Burton. 1984. Econometric duration analysis. Journal of Econometrics 24: 63–132.MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Kalbfleisch, J.D., and R.L. Prentice. 1980. The statistical analysis of failure data. New York: Wiley.MATHGoogle Scholar
  14. 14.
    Klein, J.P., and M.L. Moeschberger. 2003. Survival analysis, techniques for censored and truncated data, 2nd ed. New York: Springer.MATHGoogle Scholar
  15. 16.
    Lawless, J.F. 1982. Statistical methods and model for lifetime data. New York: Wiley.MATHGoogle Scholar
  16. 17.
    Le Cam, L. 1986. Asymptotic methods in statistical decision theory. New York: Springer.CrossRefMATHGoogle Scholar
  17. 18.
    Le Cam, L. 1990. Maximum likelihood: An introduction. International Statistical Institute (ISI) 58: 153–171.MATHGoogle Scholar
  18. 19.
    Le Cam, L., and G. Lo Yang. 2000. Asymptotics in statistics: Some basic concepts, 2nd ed. New York: Springer.Google Scholar
  19. 20.
    Lehmann, E.L., and G. Casella. 1998. Theory of point estimation, 2nd ed. New York: Springer.MATHGoogle Scholar
  20. 21.
    McQueen, G., and S. Thorley. 1994. Bubbles, stock returns, and duration dependence. Journal of Financial and Quantitative Analysis 29: 379–401.CrossRefGoogle Scholar
  21. 22.
    Meeker, W.Q., and L.A. Escobar. 1995. Assessing influence in regression analysis with censored data. Biometrics 48: 50728.Google Scholar
  22. 23.
    Mudholkar, G.S., K.O. Asubonteng, and D.A. Hutson. 2009. Transformation for Weibull model analysis of bathtub failure rate data in reliability analysis. Statistical Methodology 6: 622–633.MathSciNetCrossRefMATHGoogle Scholar
  23. 24.
    Mudholkar, G.S., and K.O. Asubonteng. 2010. Data-transformation approach to lifetimes data analysis: An overview. Journal of Statistical Planning and Inference 140: 2904–2917.MathSciNetCrossRefMATHGoogle Scholar
  24. 25.
    Mudholkar, G.S., and D.K. Srivastava. 1993. Exponentiated Weibull family for analyzing bathtub failure rate data. IEEE Transactions on Reliability 42: 299–302.CrossRefMATHGoogle Scholar
  25. 26.
    Mudholkar, G.S., and G.D. Kollia. 1994. Generalized Weibull family: A structural analysis. Communication Statistics-Theory and Methods 23: 1149–1171.MathSciNetCrossRefMATHGoogle Scholar
  26. 27.
    Mudholkar, G.S., D.K. Srivastava, and M. Freimer. 1995. Exponentiated Weibull family: A reanalysis of the bus motor failure data. Technometrics 37: 436–445.CrossRefMATHGoogle Scholar
  27. 28.
    Mudholkar, G.S., D.K. Srivastava, and G. Kollia. 1996. A generalization of Weibull distribution with application to the analysis of survival data. Journal of the American Statistical Association 91: 1575–1583.MathSciNetCrossRefMATHGoogle Scholar
  28. 29.
    Mudholkar, G.S., and D.A. Hutson. 1996. The exponentiated Weibull family: Some properties and a flood data application. Communication Statistics—Theory and Methods 25: 3059–3083.MathSciNetCrossRefMATHGoogle Scholar
  29. 30.
    Newcomb, S. 1881. Note on the frequency of use of the different digits in natural numbers. American Journal of Mathematics 4: 39–40.MathSciNetCrossRefMATHGoogle Scholar
  30. 31.
    Pawitan, Y. 2001. In all likelihood: Statistical modeling and inference using likelihood method. New York: Oxford University Press.MATHGoogle Scholar
  31. 33.
    Rao, C.R. 1973. Linear statistical inference and its application. New York: Wiley.CrossRefGoogle Scholar
  32. 35.
    Terrell, G.R. 2003. The Wilson-Hilfety transformation is locally saddlepoint. Biometrika 445–453.Google Scholar
  33. 36.
    United States Water Resources Council. 1977. Guidelines For determining flood flow frequency. Hydrology Committee. Washington, D.C.: Water Resources Council.Google Scholar
  34. 37.
    Weibull, W. 1939. Statistical theory of the strength of materials. Ingenioor Vetenskps Akademiens Handlingar 151: 1–45.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Kobby Asubonteng
    • 1
  • Govind S. Mudholkar
    • 2
  • Alan Hutson
    • 3
  1. 1.AstraZeneca PharmaceuticalsGaithersburgUSA
  2. 2.Department of Statistics and BiostatisticsUniversity of RochesterRochesterUSA
  3. 3.Department of BiostatisticsUniversity at BuffaloBuffaloUSA

Personalised recommendations