Advertisement

On Wavelet-Based Methods for Noise Reduction of cDNA Microarray Images

  • Tamanna Howlader
  • S. M. Mahbubur Rahman
  • Yogendra Prasad Chaubey
Chapter

Abstract

Denoising is recognized as one of the mandatory preprocessing tasks in microarray image analysis. Sparse representations of image pixels are commonly exploited to develop efficient image denoising algorithms. Existing approaches to transform image pixels into sparse representations require computationally demanding optimization techniques or a huge amount of prior knowledge to learn the kernels. Nevertheless, due to the mathematical elegancy, different types of multiresolution analysis, in particular, the variants of wavelet transforms such as the discrete wavelet transform, stationary wavelet transform, and complex wavelet transform have been employed successfully to develop many high-performance microarray array image denoising algorithms. This article presents a review of the sequential development of the wavelet-based methods for microarray image denoising. The useful and well-known properties of wavelet coefficients have led to the development of these algorithms by exploiting the statistical nature of the coefficients of the image and noise. The objective of this article is to summarize the key features of these algorithms and provide constructive analysis through categorization and comparison. The surveyed methods are discussed with respect to algorithmic issues such as the type of wavelet transforms used, statistical models employed, computational complexity, and denoising performance metrics.

Keywords

cDNA microarray image Gene expression Noise reduction Wavelet transform 

References

  1. 1.
    Adjeroh, D.A., Y. Zhang, and R. Parthe. 2006. On denoising and compression of DNA microarray images. Pattern Recognition 39: 2478–2493.CrossRefMATHGoogle Scholar
  2. 2.
    Balagurunathan, Y., E.R. Dougherty, Y. Chen, M.L. Bittner, and J.M. Trent. 2002. Simulation of cDNA microarrays via a parameterized random signal model. Journal of Biomedical Optics 7 (3): 507523.Google Scholar
  3. 3.
    Cai, T., and B. Silverman. 2001. Incorporating information on neighboring coefficients into wavelet estimation. Sankhya: The Indian Journal of Statistics 63: 127–148.MATHGoogle Scholar
  4. 4.
    Candès, E.J., and D.L. Donoho. 1999. Ridgelets: A key to higher-dimensional intermittency? Philosophical Transactions of the Royal Society A 357 (1760): 2495–2509.MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Candès, E.J., and D.L. Donoho. 2004. New tight frames of curvelets and optimal representations of objects with piecewise \(\cal{C}^2\) singularities. Communications on Pure and Applied Mathematics 57 (2): 219–266.MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Chang, S.G., B. Yu, and M. Vettereli. 2000. Adaptive wavelet thresholding for image denoising and compression. IEEE Transactions on Image Processing 9 (9): 1532–1546.MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Coifman, R.R., and D.L. Donoho. 1995. Translation-invariant de-noising. In Wavelets and statistics, ed. A. Antoniadis, and G. Oppenheim. Berlin: Springer.Google Scholar
  8. 8.
    Dabov, K., A. Foi, V. Katkovnik, and K. Egiazarian. 2007. Image denoising by sparse 3D transform-domain collaborative filtering. IEEE Transactions on Image Processing 16 (8): 2080–2095.MathSciNetCrossRefGoogle Scholar
  9. 9.
    Daskalakis, A., D. Cavouras, P. Bougioukos, S. Kostopoulos, D. Glotsos, I. Kalatzis, G.C. Kagadis, C. Argyropoulos, and G. Nikiforidis. 2007. Improving gene quantification by adjustable spot-image restoration. Bioinformatics 23 (17): 2265–2272.CrossRefGoogle Scholar
  10. 10.
    Davies, S.W., and D.A. Seale. 2005. DNA microarray stochastic model. IEEE Transactions on Nanobioscience 4: 248–254.CrossRefGoogle Scholar
  11. 11.
    Do, M.N., and M. Vetterli. 2005. The contourlet transform: An efficient directional multiresolution image representation. IEEE Transactions on Image Processing 14 (12): 2091–2106.CrossRefGoogle Scholar
  12. 12.
    Donald, A.A., Y. Zhang, and R. Parthe. 2006. On denoising and compression of DNA microarray images. Pattern Recognition 39: 2478–2493.CrossRefMATHGoogle Scholar
  13. 13.
    Donoho, D.L. 1995. Denoising by soft-thresholding. IEEE Transactions on Information Theory 41 (3): 613–627.MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Donoho, D.L., and I.M. Johnstone. 1994. Ideal spatial adaptation by wavelet shrinkage. Biometrika 81 (3): 425–455.MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Donoho, D.L., and I.M. Johnstone. 1995. Adapting to unknown smoothness via wavelet shrinkage. Journal of the American Statistical Association 90 (432): 1200–1224.MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Eltoft, T. 2005. The Rician Inverse Gaussian distribution: A new model for non-Rayleigh signal amplitude statistics. IEEE Transactions on Image Processing 14 (11): 1722–1735.MathSciNetCrossRefGoogle Scholar
  17. 17.
    Freeman, W.T., and E.H. Adelson. 1991. The design and use of steerable filters. IEEE Transations on Pattern Analysis and Machine Intelligence 13 (9): 891–906.CrossRefGoogle Scholar
  18. 18.
    Gonzalez, R.C., and R.E. Woods. 2002. Digital image processing, 2nd ed. Singapore: Pearson.Google Scholar
  19. 19.
    Grant, R.P. 2004. Computational genomics: Theory and application, 1st ed. NJ: Taylor & Francis.Google Scholar
  20. 20.
    Howlader, T., and Y.P. Chaubey. 2009. Wavelet-based noise reduction by joint statistical modeling of cDNA microarray images. Journal of Statistical Theory and Practice 3 (2): 349–370.Google Scholar
  21. 21.
    Howlader, T., and Y.P. Chaubey. 2010. Noise reduction of cDNA microarray images using complex wavelets. IEEE Transactions on Image Processing 19 (8): 1953–1967.MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Hyverinen, A. 1999. Sparse code shrinkage: Denoising of nongaussian data by maximum likelihood estimation. Neural Computation 11 (7): 1739–1768.CrossRefGoogle Scholar
  23. 23.
    Ishwaran, H., and J.S. Rao. 2003. Detecting differentially expressed genes in microarrays using Bayesian model selection. Journal of the American Statistical Association 98: 438–455.Google Scholar
  24. 24.
    Jiang, J., L. Zhang, and J. Yang. 2014. Mixed noise removal by weighted encoding with sparse nonlocal regularization. IEEE Transations on Image Processing 23 (6): 2651–2662.MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Kerr, M.K., M. Martin, and G. Churchill. 2000. Analysis of variance for gene expression microarray data. Journal of Computational Biology 7 (6): 819–837.CrossRefGoogle Scholar
  26. 26.
    Kingsbury, N.G. 1999. Image processing with complex wavelets. Philosophical Transactions of the Royal Society A 357 (1760): 2543–2560.CrossRefMATHGoogle Scholar
  27. 27.
    Kingsbury, N.G. 2001. Complex wavelets for shift invariance analysis and filtering of signals. Applied and Computational Harmonic Analysis 10 (3): 234–253.MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Lukac, R. 2014. Microarray image restoration and noise filtering. In Microarray image and data analysis: Theory and practice, ed. L. Rueda, 171–194. CRC Press.Google Scholar
  29. 29.
    Lukac, R., K.N. Plataniotis, B. Smolka, and A.N. Venetsanopoulos. 2004. A multichannel order-statistic technique for cDNA microarray image processing. IEEE Transactions on Nanobioscience 3: 272–285.CrossRefGoogle Scholar
  30. 30.
    Lukac, R., K.N. Plataniotisa, B. Smolkab, and A.N. Venetsanopoulos. 2005. cDNA microarray image processing using fuzzy vector filtering framework. Fuzzy Sets and Systems 152: 17–35.MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Lukac, R., and B. Smolka. 2003. Application of the adaptive center-weighted vector median framework for the enhancement of cDNA microarray images. International Journal of Applied Mathematics and Computer Science 13 (3): 369–383.MathSciNetMATHGoogle Scholar
  32. 32.
    Mallat, S. 1999. A wavelet tour of signal processing, 2nd ed. San Diego, CA: Academic Press.MATHGoogle Scholar
  33. 33.
    Mastriani, M., and A.E. Giraldez. 2006. Microarrays denoising via smoothing of coefficients in wavelet domain. International Journal of Biomedical Sciences 1: 7–14.Google Scholar
  34. 34.
    Mastrogianni, A., E. Dermatas, and A. Bezerianos. 2008. Microarray image denoising using spatial filtering and wavelet transformation. In Proceedings of international federation of medical and biological engineering, Singapore: International conference on biomedical engineering, 594–597.Google Scholar
  35. 35.
    McLachlan, G.J., K. Do, and C. Ambroise. 2004. Analyzing microarray gene expression data, 1st ed. NJ: Wiley.CrossRefMATHGoogle Scholar
  36. 36.
    Mihçak, M.K., I. Kozintsev, K. Ramchandran, and P. Moulin. 1999. Low-complexity image denoising based on statistical modeling of wavelet coefficients. IEEE Signal Processing Letters 6 (12): 300–303.Google Scholar
  37. 37.
    Motwani, M.C., M.C. Gadiya, R.C. Motwani, and F. Harris. 2004. Survey of image denoising techniques. In Proceedings of global signal processing expo and conference, Santa Clara, CA, 27–30.Google Scholar
  38. 38.
    O’Neill, P., G.D. Magoulas, and X. Liu. 2003. Improved processing of microarray data using image reconstruction techniques. IEEE Transactions on Nanobioscience 2: 176–183.CrossRefGoogle Scholar
  39. 39.
    Peterson, S.R., Y.H. Lee, and S.A. Kassam. 1988. Some statistical properties of alpha-trimmed mean and standard type M filters. IEEE Transactions on Acoustics, Speech, and Signal Processing 36 (5): 707–713.Google Scholar
  40. 40.
    Portilla, J., V. Strela, M.J. Wainwright, and E.P. Simoncelli. 2003. Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Transactions on Image Processing 12 (11): 1338–1351.MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Rahman, S.M.M., O. Ahmad, and M.N.S. Swamy. 2008. Bayesian wavelet-based image denoising using the Gauss-Hermite expansion. IEEE Transactions on Image Processing 17 (10): 1755–1771.Google Scholar
  42. 42.
    Rangayyan, R.M., M. Ciuc, and F. Faghih. 1998. Adaptive-neighborhood filtering of images corrupted by signal-dependent noise. Appl. Opt. 37: 4477–4487.CrossRefGoogle Scholar
  43. 43.
    Rueda, L. 2014. Microarray image and data analysis: Theory and practice, 1st ed. Boca Raton, FL: CRC Press.Google Scholar
  44. 44.
    Selesnick, I.W. 2001. The double density DWT. In Wavelets in signal and image analysis: From theory to practice. Kluwer.Google Scholar
  45. 45.
    Selesnick, I.W., R.G. Baraniuk, and N.G. Kingsbury. 2005. The dual-tree complex wavelet transform. IEEE Signal Processing Magazine 22 (6): 123–151.CrossRefGoogle Scholar
  46. 46.
    Şendur, L., and I.W. Selesnick. 2002. Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency. IEEE Transactions on Signal Processing 50 (11): 2744–2756.CrossRefGoogle Scholar
  47. 47.
    Şendur, L., and I.W. Selesnick. 2002. Bivariate shrinkage with local variance estimation. IEEE Signal Processing Letters 9 (12): 438–441.Google Scholar
  48. 48.
    Shams, R., H. Rabbani, and S. Gazor. 2014. A comparison of x-lets in denoising cDNA microarray images. In Proceedings of IEEE international conference on acoustics, speech, and signal processing, 2862–2866. IEEE Signal Processing Society, Florence, Italy.Google Scholar
  49. 49.
    Smolka, B., R. Lukac, and K. Plataniotis. 2006. Fast noise reduction in cDNA microarray images. In Proceedings of Biennial symposium on communications, Kingston, ON, Canada, 348–351.Google Scholar
  50. 50.
    Smolka, B., and K. Plataniotis. 2005. Ultrafast technique of impulsive noise removal with application to microarray image denoising. In Proceedings of international conference on image analysis and recognition, vol. 3656, 990–997. Toronto, Canada.Google Scholar
  51. 51.
    Srinivasan, L., Y. Rakvongthai, and S. Oraintara. 2014. Microarray image denoising using complex Gaussian scale mixtures of complex wavelets. IEEE Journal of Biomedical and Health Informatics 18 (4): 1423–1430.CrossRefGoogle Scholar
  52. 52.
    Stefanou, H., T. Margaritis, D. Kafetzopoulos, K. Marias, and P. Tsakalides. 2007. Microarray image denoising using a two-stage multiresolution technique. In Proceedings of IEEE international conference on bioinformatics and biomedicine, 383–389. IEEE Computer Society, Freemont, CA.Google Scholar
  53. 53.
    Velisavljević, V., B. Lozano, M. Vetterli, M., and P.L. Dragotti. 2006. Directionlets: anisotropic multidirectional representation with separable filtering. IEEE Transactions on Image Processing 15 (7): 1916–1933.Google Scholar
  54. 54.
    Wang, X.H., R.S.H. Istepanian, and Y.H. Song. 2003. Microarray image enhancement by denoising using stationary wavelet transform. IEEE Transactions on Nanonbioscince 2 (4): 184–189.CrossRefGoogle Scholar
  55. 55.
    Wei, D., and A.C. Bovik. 2000. Wavelet denoising for image enhancement. In Handbook of image and video processing, ed. A.C. Bovik. NY: Academic Press.Google Scholar
  56. 56.
    Wit, E., and J. McClure. 2004. Statistics for microarrays: Design, analysis and inference, 1st ed. England: Wiley.CrossRefMATHGoogle Scholar
  57. 57.
    Zhang, A. 2006. Advanced analysis of gene expression microarray data, 1st ed. Singapore: World Scientific.CrossRefMATHGoogle Scholar
  58. 58.
    Zhang, L., P. Bao, and X. Wu. 2005. Multiscale LMMSE-based image denoising with optimal wavelet selection. IEEE Transactions on Circuits and Systems for Video Technology 15 (4): 469–481.CrossRefGoogle Scholar
  59. 59.
    Zhang, M., and B.K. Gunturk. 2008. Multiresolution bilateral filtering for image denoising. IEEE Transactions on Image Processing 17 (12): 2324–2333.Google Scholar
  60. 60.
    Zhang, W., I. Shmulevich, and J. Astola. 2004. Microarray quality control, 1st ed. NJ: Wiley.CrossRefGoogle Scholar
  61. 61.
    Zhang, X.Y., F. Chen, Y. Zhang, S.C. Agner, M. Akay, Z. Lu, M.M.Y. Waye, and S.K. Tsui. 2002. Signal processing techniques in genomic engineering. Proceedings of the IEEE 90 (12): 1822–33.CrossRefGoogle Scholar
  62. 62.
    Zifan, A., M.H. Moradi, and S. Gharibzadeh. 2010. Microarray image enhancement by denoising using decimated and undecimated multiwavelet transforms. Signal, Image and Video Processing 4 (2): 177–185.CrossRefMATHGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Tamanna Howlader
    • 1
  • S. M. Mahbubur Rahman
    • 2
  • Yogendra Prasad Chaubey
    • 3
  1. 1.Institute of Statistical Research and TrainingUniversity of DhakaDhakaBangladesh
  2. 2.Department of Electrical and Electronic EngineeringUniversity of Liberal Arts BangladeshDhakaBangladesh
  3. 3.Department of Mathematics and StatisticsConcordia UniversityMontrealCanada

Personalised recommendations