Skip to main content

Exact Likelihood-Based Point and Interval Estimation for Lifetime Characteristics of Laplace Distribution Based on a Time-Constrained Life-Testing Experiment

  • Chapter
  • First Online:

Abstract

In this paper, we first derive explicit expressions for the MLEs of the location and scale parameters of the Laplace distribution based on a Type-I right-censored sample arising from a time-constrained life-testing experiment by considering different cases. We derive the conditional joint MGF of these MLEs and use them to derive the bias and MSEs of the MLEs for all the cases. We then derive the exact conditional marginal and joint density functions of the MLEs and utilize them to develop exact conditional CIs for the parameters. We also briefly discuss the MLEs of reliability and cumulative hazard functions and the construction of exact CIs for these functions. Next, a Monte Carlo simulation study is carried out to evaluate the performance of the developed inferential results. Finally, some examples are presented to illustrate the point and interval estimation methods developed here under a time-constrained life-testing experiment.

This is a preview of subscription content, log in via an institution.

Abbreviations

CDF:

Cumulative density function

CI:

Confidence interval

K–M curve:

Kaplan–Meier curve

i.i.d.:

Independent and identically distributed

MGF:

Moment generating function

MLE:

Maximum likelihood estimator

MSE:

Mean square error

PDF:

Probability density function

P–P plot:

Probability–probability plot

Q–Q plot:

Quantile–quantile plot

SE:

Standard error

n :

Sample size

r :

Number of smallest order statistics observed in the Type-II censored sample

\(X_{i:n}\) :

The i-th-ordered failure time from a sample of size n

L :

Likelihood function

f(t):

Probability density function

R(t):

Reliability or survival function

F(t):

Cumulative distribution function

\(F_\varGamma (t)\) :

Cumulative distribution function of a gamma variable

\(S_\varGamma (t)\) :

Reliability function of a gamma variable

\(\varLambda (t)\) :

Cumulative hazard function

\(E(\cdot )\) :

Expectation

\(Var(\cdot )\) :

Variance

\(Cov(\cdot , \cdot )\) :

Covariance

\(E(\sigma )\) :

Exponential distribution with scale parameter \(\sigma \)

\(\varGamma (\alpha ,\beta )\) :

Gamma distribution with shape parameter \(\alpha \) and scale parameter \(\beta \)

\(\varGamma (t,\cdot ,\cdot )\) :

The CDF of the gamma distribution

\(L(\mu ,\sigma )\) :

Laplace distribution with location parameter \(\mu \) and scale parameter \(\sigma \)

q :

Quantile of the standard L(0, 1)

\(Q_\alpha \) :

100\(\alpha \%\) quantile

References

  1. Arnold, B.C., N. Balakrishnan, and N.H. Nagaraja. 1992. A first course in order statistics. New York: Wiley.

    MATH  Google Scholar 

  2. Bain, L.J., J.A. Eastman, M. Engelhardt, N. Balakrishnan, and C.E. Antle. 1992. Reliability estimation based on MLEs for complete and censored samples. In Handbook of logistic distribution, ed. N. Balakrishnan. New York: Marcel Dekker.

    Google Scholar 

  3. Bain, L.J., and M. Engelhardt. 1973. Interval estimation for the two-parameter double exponential distribution. Technometrics 15: 875–887.

    Article  MathSciNet  MATH  Google Scholar 

  4. Balakrishnan, N., and M.P. Chandramouleeswaran. 1996. Reliability estimation and tolerance limits for Laplace distribution based on censored samples. Mircoelectronics Reliability 36: 375–378.

    Article  Google Scholar 

  5. Balakrishnan, N., and A.C. Cohen. 1991. Order statistics and inference: Estimation methods. Boston: Academic Press.

    MATH  Google Scholar 

  6. Balakrishnan, N., and C.D. Cutler. 1995. Maximum likelihood estimation of Laplace parameters based on Type-II censored samples. In Statistical theory and applications: Papers in honor of herbert A. David, eds.: Nagaraja, H.N.,P.K. Sen, and D.F. Morrison, 45–151. New York: Springer.

    Google Scholar 

  7. Balakrishnan, N., and D. Kundu. 2013. Hybrid censoring: Models, inferential results and applications (with discussions). Computational Statistics & Data Analysis 57: 166–209.

    Article  MathSciNet  MATH  Google Scholar 

  8. Balakrishnan, N., and X. Zhu. 2016. Exact likelihood-based point and interval estimation for Laplace distribution based on Type-II right censored samples. Journal of Statistical Computation and Simulation 86: 29–54.

    Article  MathSciNet  Google Scholar 

  9. Childs, A., and N. Balakrishnan. 1996. Conditional inference procedures for the Laplace distribution based on Type-II right censored samples. Statistics & Probability Letters 31: 31–39.

    Article  MathSciNet  MATH  Google Scholar 

  10. Childs, A., and N. Balakrishnan. 1997. Maximum likelihood estimation of Laplace parameters based on general Type-II censored samples. Statistical Papers 38: 343–349.

    Article  MathSciNet  MATH  Google Scholar 

  11. Childs, A., and N. Balakrishnan. 2000. Conditional inference procedures for the Laplace distribution when the observed samples are progressively censored. Metrika 52: 253–265.

    Article  MathSciNet  MATH  Google Scholar 

  12. Davis, D. 1952. An analysis of some failure data. Journal of the American Statistical Association 47: 113–150.

    Article  Google Scholar 

  13. Iliopoulos, G., and N. Balakrishnan. 2011. Exact likelihood inference for Laplace distribution based on Type-II censored samples. Journal of Statistical Planning and Inference 141: 1224–1239.

    Article  MathSciNet  MATH  Google Scholar 

  14. Iliopoulos, G., and S.M.T.K. MirMostafaee. 2014. Exact prediction intervals for order statistics from the Laplace distribution based on the maximum-likelihood estimators. Statistics 48: 575–592.

    Article  MathSciNet  MATH  Google Scholar 

  15. Johnson, N.L., S. Kotz, and N. Balakrishnan. 1994. Continuous Univariate distributions, vol. 1, 2nd ed. New York: Wiley.

    Google Scholar 

  16. Johnson, N.L., S. Kotz, and N. Balakrishnan. 1995. Continuous Univariate Distributions, vol. 2, 2nd ed. New York: Wiley.

    Google Scholar 

  17. Kappenman, R.F. 1975. Conditional confidence intervals for double exponential distribution parameters. Technometrics 17: 233–235.

    Article  MathSciNet  MATH  Google Scholar 

  18. Kappenman, R.F. 1977. Tolerance intervals for the double exponential distribution. Journal of the American Statistical Association 72: 908–909.

    MathSciNet  MATH  Google Scholar 

  19. Kotz, S., T.J. Kozubowski, and K. Podgorski. 2001. The laplace distribution and generalizations: A revisit with applications to communications, economics, engineering, and finance. New York: Wiley.

    Book  MATH  Google Scholar 

  20. Mann, N.R., and K.W. Fertig. 1973. Tables for obtaining Weibull confidence bounds and tolerance bounds based on best linear invariant estimates of parameters of the extreme-value distribution. Technometrics 15: 87–101.

    Article  MathSciNet  MATH  Google Scholar 

  21. Puig, P., and M.A. Stephens. 2000. Tests of fit for the Laplace distribution, with applications. Technometrics 42: 417–424.

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhu, X., and N. Balakrishnan. 2016. Exact inference for Laplace quantile, reliability and cumulative hazard functions based on Type-II censored data. IEEE Transactions on Reliability 65: 164–178.

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their sincere thanks to the editor and anonymous reviewers for their useful comments and suggestions on an earlier version of this manuscript which led to this improved one.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Balakrishnan .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 List of notation

$$\begin{aligned} p_0= & {} \frac{1}{2^n}e^{-\frac{n(T-\mu )}{\sigma }},\\ q_0= & {} \left( 1-\frac{1}{2}e^{-\frac{\mu -T}{\sigma }}\right) ^n,\\ p_1= & {} \frac{(-1)^ln!e^{-\frac{(T-\mu )(n+l-d)}{\sigma }}}{(1-p_0)2^n(n-d)!j!(d-j-l)!l!},\\ p_2= & {} \frac{(-1)^ln!e^{-\frac{(T-\mu )m}{\sigma }}}{2^nj!(l+1)!(m-j-l-1)!(n-m)!(1-p_0)},\\ p_3= & {} -p_2e^{-\frac{(T-\mu )(l+1)}{\sigma }},\\ p_4= & {} \frac{n!e^{-\frac{(T-\mu )m}{\sigma }}}{2^nm!m!(1-p_0)},\\ p_5= & {} \frac{(-1)^{l_1+d-m-1-l_2}n!e^{-\frac{(T-\mu )(m-1-l_2)}{\sigma }}}{2^nj!(m-1-j-l_1)!(d-m-1-l_2)!(l_2+1)!(n-d)!(l_1+1)!(1-p_0)},\\ p_6= & {} -p_5e^{-\frac{(T-\mu )(l_2+1)}{\sigma }},\\ p_{7,e}= & {} -\frac{p_5}{l_1+l_2+2},\\ p_{7,o}= & {} \frac{(-1)^{l_1+d-m-1-l_2}n!e^{-\frac{(T-\mu )(m-l_2)}{\sigma }}}{ (1-p_0)2^n(l_1+l_2+1)l_1!l_2!j!(n-d)!(m-j-l_1)!(d-m-1-l_2)!},\\ p_{8,e}= & {} -p_{7,e}e^{-\frac{(T-\mu )(l_1+l_2+2)}{\sigma }},\\ p_{8,o}= & {} -p_{7,o}e^{-\frac{(T-\mu )(l_1+l_2+1)}{\sigma }} \end{aligned}$$
$$\begin{aligned} p_9&=\frac{(-1)^{d-m-l-1}n!e^{-\frac{(T-\mu )(m-l-1)}{\sigma }}}{2^nm!(d-m-l-1)!(l+1)!(n-d)!(1-p_0)},\\ p_{10}&=-p_9e^{-\frac{(T-\mu )(l+1)}{\sigma }},\\ p_{11}&=\frac{(-1)^{l_1+l_2}n!e^{-\frac{(T-\mu )(n-d+l_2)}{\sigma }}}{2^nm!(j-m-l_1-1)!l_1!(d-j-l_2)!l_2!(n-d)!(m+l_1+1)(1-p_0)},\\ p_{7\sigma }&= \frac{(-1)^{l_1+d-m-1-l_2}n!e^{-\frac{(T-\mu )(m-1-l_2)}{\sigma }}}{ (1-p_0)2^n(l_1+l_2+1)l_1!l_2!j!(n-d)!(m-j-l_1)!(d-m-1-l_2)!},\\ p_{8\sigma }&=-p_{7\sigma }e^{-\frac{(T-\mu )(l_1+l_2+1)}{\sigma }},\\ p_{2\mu }&=\frac{(-1)^ln!e^{-\frac{(T-\mu )m}{\sigma }}}{(m-l-1)!(l+1)!m!2^{m+l+1}(1-p_0)},\\ p_{3\mu }&=-p_{2\mu }e^{-\frac{(T-\mu )(l+1)}{\sigma }},\\ p_{5\mu }&=\frac{n!(-1)^{l_1+d-m-1-l_2}e^{-\frac{(T-\mu )(m-l_2-1)}{\sigma }}}{2^{m+l_1+1}(m-l_1-1)!(l_1+1)!(d-m-l_2-1)!(l_2+1)!(n-d)!(1-p_0)},\\ p_{6\mu }&=-p_{5\mu }e^{-\frac{(T-\mu )(l_2+1)}{\sigma }},\\ p_{7\mu ,e}&=-\frac{l_2+1}{l_1+l_2+2}p_{5\mu },\\ p_{7\mu ,o}&=\frac{n!(-1)^{l_1+d-m-1-l_2}e^{-\frac{(T-\mu )(m-l_2)}{\sigma }}}{2^{m+l_1+1}(m-l_1)!l_1!(d-m-1-l_2)!l_2!(n-d)!(l_1+l_2+1)(1-p_0)},\\ p_{8\mu ,e}&=-p_{7\mu ,e}e^{-\frac{(T-\mu )(l_1+l_2+2)}{\sigma }},\\ p_{8\mu ,o}&=-p_{7\mu ,o}e^{-\frac{(T-\mu )(l_1+l_2+1)}{\sigma }},\\ p_{11\mu }&=\frac{(-1)^{l_1}n!e^{-\frac{(T-\mu )(n-d)}{\sigma }} \left[ 1-\frac{1}{2}e^{-\frac{T-\mu }{\sigma }}\right] ^{d-m-1-l_1}}{2^{m+l_1+1+n-d}m!(d-m-l_1-1)!l_1!(n-d)!(m+l_1+1)(1-p_0)},\\ q_1&=\frac{n!}{d!(n-d)!(1-q_0)} \left( \frac{1}{2}e^{-\frac{\mu -T}{\sigma }}\right) ^{d} \left( 1-\frac{1}{2}e^{-\frac{\mu -T}{\sigma }}\right) ^{n-d},\\ q_2&=\frac{n!}{m!m!}\left( \frac{1}{2}e^{-\frac{\mu -T}{\sigma }}\right) ^m\left[ 1-\frac{1}{2}e^{-\frac{\mu -T}{\sigma }}\right] ^m,\\ q_3&=\frac{(-1)^l\left( 1-\frac{1}{2}e^{-\frac{\mu -T}{\sigma }}\right) ^{n-d} \left( \frac{1}{2}e^{-\frac{(\mu -T)}{\sigma }}\right) ^d n!}{(l+m+1)m!l!(d-m-1-l)!(n-d)!(1-q_0)},\\ Z_{\sigma }^{(7)}&\overset{d}{=}\varGamma \left( j+d-m-1,\frac{\sigma }{d}\right) +N\varGamma \left( m-j,\frac{\sigma }{d}\right) +E\left( \frac{(l_2-l_1+1)\sigma }{(l_2+l_1+1)d}\right) \\&+\frac{(T-\mu )(m-1-l_2)}{d},\\ Z_{\sigma }^{(8)}&\overset{d}{=}\varGamma \left( j+d-m-1,\frac{\sigma }{d}\right) +N\varGamma \left( m-j,\frac{\sigma }{d}\right) +E\left( \frac{(l_2-l_1+1)\sigma }{(l_2+l_1+1)d}\right) \\&+\frac{(T-\mu )(m-l_1)}{d}, \end{aligned}$$
$$\begin{aligned} Z_1^{(1)}&\overset{d}{=}\varGamma \left( j,\frac{\sigma }{d}\right) +N\varGamma \left( d-j,\frac{\sigma }{d}\right) +\frac{(T-\mu )(d-l)}{d},\\ Z_2^{(1)}&\overset{d}{=}\log \left( \frac{n}{2d}\right) Z_1^{(1)}+T,\\ Z_{1,e}^{(2)}&\overset{d}{=}\varGamma \left( j,\frac{\sigma }{m}\right) + N\varGamma \left( m-1-j,\frac{\sigma }{m}\right) -\frac{\sigma }{m} E_2 +(T-\mu ),\\ Z_{2,e}^{(2)}&\overset{d}{=}\frac{\sigma }{2(l+1)}E_2+\frac{T+\mu }{2},\\ Z_1^{(3)}&\overset{d}{=}\varGamma \left( j,\frac{\sigma }{m}\right) + N\varGamma \left( m-1-j,\frac{\sigma }{m}\right) -\frac{\sigma }{m} E_3+\frac{(T-\mu )(m-l-1)}{m},\\ Z_2^{(3)}&\overset{d}{=}\frac{\sigma }{2(l+1)}E_3+T,\\ Z_1^{(4)}&\overset{d}{=}\varGamma \left( m-1,\frac{\sigma }{m}\right) +\frac{\sigma }{m}E_4+(T-\mu ),\\ Z_2^{(4)}&\overset{d}{=}-\frac{\sigma }{n}E_4+\frac{T+\mu }{2},\\ Z_{1,e}^{(5)}&\overset{d}{=}\varGamma \left( d-m-1+j,\frac{\sigma }{d}\right) +N\varGamma \left( m-1-j,\frac{\sigma }{d}\right) +\frac{\sigma }{d}E_{5A}-\frac{\sigma }{d}E_{5B}\\ {}&+\frac{(T-\mu )(m-1-l_2)}{d},\\ Z_{2,e}^{(5)}&\overset{d}{=}\frac{\sigma }{2(l_2+1)}E_{5A}+\frac{\sigma }{2(l_1+1)}E_{5B}+\mu ,\\ Z_{1,e}^{(6)}&\overset{d}{=}\varGamma \left( d-m-1+j,\frac{\sigma }{d}\right) +N\varGamma \left( m-1-j,\frac{\sigma }{d}\right) +\frac{\sigma }{d}E_{6A}-\frac{\sigma }{d}E_{6B} \\ {}&+\frac{(T-\mu )m}{d},\\ Z_{2,e}^{(6)}&\overset{d}{=}\frac{\sigma }{2(l_2+1)}E_{6A}+\frac{\sigma }{2(l_1+1)}E_{6B}+\frac{T+\mu }{2},\\ Z_{1,e}^{(7)}&\overset{d}{=}\varGamma \left( d-m-1+j,\frac{\sigma }{d}\right) +N\varGamma \left( m-1-j,\frac{\sigma }{d}\right) +\frac{(l_2-l_1)\sigma }{(l_1+l_2+2)d}E_{7A}\\ {}&-\frac{\sigma }{d}E_{7B}+\frac{(T-\mu )(m-l_2-1)}{d},\\ Z_{2,e}^{(7)}&\overset{d}{=}\frac{\sigma }{l_1+l_2+2}E_{7A}+\frac{\sigma }{2(l_1+1)}E_{7B}+\mu ,\\ Z_{1,o}^{(7)}&\overset{d}{=}\varGamma \left( j+d-m-1,\frac{\sigma }{d}\right) + N\varGamma \left( m-j,\frac{\sigma }{d}\right) +\frac{(l_2-l_1+1)\sigma }{(l_2+l_1+1)d} E_{7} \\ {}&+\frac{(T-\mu )(m-l_2)}{d},\\ Z_{2,o}^{(7)}&\overset{d}{=}\frac{\sigma }{l_2+l_1+1}E_{7}+\mu ,\\ Z_{1,e}^{(8)}&\overset{d}{=}\varGamma \left( d-m-1+j,\frac{\sigma }{d}\right) +N\varGamma \left( m-1-j,\frac{\sigma }{d}\right) +\frac{(l_2-l_1)\sigma }{(l_1+l_2+2)d}E_{8A}\\ {}&-\frac{\sigma }{d}E_{8B}+\frac{(T-\mu )(m-l_1-1)}{d},\\ Z_{2,e}^{(8)}&\overset{d}{=}\frac{\sigma }{l_1+l_2+2}E_{8A}+\frac{\sigma }{2(l_1+1)}E_{8B}+T,\\ Z_{1,o}^{(8)}&\overset{d}{=}\varGamma \left( j+d-m-1,\frac{\sigma }{d}\right) + N\varGamma \left( m-j,\frac{\sigma }{d}\right) +\frac{(l_2-l_1+1)\sigma }{(l_2+l_1+1)d} E_{8}\\ {}&+\frac{(T-\mu )(m-l_1)}{d},\\ Z_{2,o}^{(8)}&\overset{d}{=}\frac{\sigma }{l_2+l_1+1}E_{8}+T,\\ Z_{1}^{(9)}&\overset{d}{=}\varGamma \left( d-2,\frac{\sigma }{d}\right) +\frac{\sigma }{d}E_{9A}+\frac{\sigma }{d}E_{9B}+\frac{(T-\mu )(m-l-1)}{d},\\ Z_{2}^{(9)}&\overset{d}{=}-\frac{\sigma }{n}E_{9A}+\frac{\sigma }{2(l+1)}E_{9B}+\mu ,\\ Z_{1}^{(10)}&\overset{d}{=}\varGamma \left( d-2,\frac{\sigma }{d}\right) +\frac{\sigma }{d}E_{10A}+\frac{\sigma }{d}E_{10B}+\frac{(T-\mu )m}{d},\\ Z_{2}^{(10)}&\overset{d}{=}-\frac{\sigma }{n}E_{10A}+\frac{\sigma }{2(l+1)}E_{10B}+\frac{T+\mu }{2},\\ \end{aligned}$$
$$\begin{aligned} Z_{1,e}^{(11)}&\overset{d}{=}\varGamma \left( d-j+m-1,\frac{\sigma }{d}\right) +N\varGamma \left( j-m-1,\frac{\sigma }{d}\right) \\&+\frac{\sigma }{d}E_{11A}+\frac{(m-l_1-1)\sigma }{(m+l_1+1)d}E_{11B} +\frac{(T-\mu )(n-d+l_2)}{d},\\ Z_{2,e}^{(11)}&\overset{d}{=}-\frac{\sigma }{n}E_{11A}-\frac{\sigma }{m+l_1+1}E_{11B}+\mu ,\\ Z_{1,o}^{(11)}&\overset{d}{=}\varGamma \left( d-j+m,\frac{\sigma }{d}\right) \\&+ N\varGamma \left( j-m-1,\frac{\sigma }{d}\right) +\frac{(m-l_1)\sigma }{(m+l_1+1)d} E_{11} +\frac{(T-\mu )(n-d+l_2)}{d},\\ Z_{2,o}^{(11)}&\overset{d}{=}-\frac{\sigma }{m+l_1+1}E_{11}+\mu ,\\ Z_{1}^{(12)}&\overset{d}{=}\varGamma \left( d,\frac{\sigma }{d}\right) ,\\ Z_{2}^{(12)}&\overset{d}{=}\log \left( \frac{n}{2d}\right) Z_1^{(12)}+T,\\ Z_{1}^{(13)}&\overset{d}{=}\varGamma \left( m-1,\frac{\sigma }{m}\right) +\frac{\sigma }{m}E_{13},\\ Z_{2}^{(13)}&\overset{d}{=}-\frac{\sigma }{n}E_{13}+T,\\ Z_{1,e}^{(14)}&\overset{d}{=}\varGamma \left( m-1,\frac{\sigma }{d}\right) +N\varGamma \left( d-m-1,\frac{\sigma }{d}\right) + \frac{\sigma }{d}E_{14A}+\frac{(m-l-1)\sigma }{(m+l+1)d}E_{14B},\\ Z_{2,e}^{(14)}&\overset{d}{=}-\frac{\sigma }{n}E_{14A}-\frac{\sigma }{m+l+1}E_{14B}+T,\\ Z_{1,o}^{(14)}&\overset{d}{=}\varGamma \left( m,\frac{\sigma }{d}\right) + N\varGamma \left( d-m-1,\frac{\sigma }{d}\right) +\frac{(m-l)\sigma }{(m+l+1)d} E_{14},\\ Z_{2,o}^{(14)}&\overset{d}{=}-\frac{\sigma }{m+l+1}E_{14}+T,\\ E.&\overset{d}{=}E(1).\\ ZQ_1&\overset{d}{=}\frac{dT+(T-\mu )(d-l)\left( \log \left( \frac{n}{2d}\right) +q\right) }{d} +\varGamma ^{*}\left( j,\frac{q+\log \left( \frac{n}{2d}\right) }{d}\sigma \right) \\ {}&+\varGamma ^{*}\left( d-j,-\frac{q+\log \left( \frac{n}{2d}\right) }{d}\sigma \right) ,\\ ZQ_2&\overset{d}{=}\frac{(2q+1)T+(1-2q)\mu }{2}+\varGamma ^*\left( j,\frac{q\sigma }{m}\right) +\varGamma ^*\left( m-1-j,-\frac{q\sigma }{m}\right) \\ {}&+E^*\left( \frac{m-2q(l+1)}{n(l+1)}\sigma \right) ,\\ ZQ_3&\overset{d}{=}\frac{(n-2l-2)qT+nT+2(l+1-m)q\mu }{n}+\varGamma ^*\left( j,\frac{q\sigma }{m}\right) \\ {}&+\varGamma ^*\left( m-1-j,-\frac{q\sigma }{m}\right) +E^*\left( \frac{m-2q(l+1)}{n(l+1)}\sigma \right) ,\\ ZQ_4&\overset{d}{=}\frac{(2q+1)T+(1-2q)\mu }{2}+\varGamma ^*\left( m-1,\frac{q\sigma }{m}\right) +E^*\left( \frac{2q-1}{n}\sigma \right) ,\\ ZQ_5&\overset{d}{=}\frac{(T-\mu )(m-1-l_2)q+d\mu }{d} +\varGamma ^*\left( d-m-1+j,\frac{q\sigma }{d}\right) \\ {}&+\varGamma ^*\left( m-1-j,-\frac{q\sigma }{d}\right) \\&+E^*\left( \frac{2(l_2+1)q+d}{2d(l_2+1)}\sigma \right) +E^*\left( \frac{d-2(l_1+1)q}{2d(l_1+1)}\sigma \right) ,\\ ZQ_6&\overset{d}{=}\frac{(T-\mu )nq+(T+\mu )d}{2d} +\varGamma ^*\left( d-m-1+j,\frac{q\sigma }{d}\right) \\ {}&+\varGamma ^*\left( m-1-j,-\frac{q\sigma }{d}\right) \\&+E^*\left( \frac{2(l_2+1)q+d}{2d(l_2+1)}\sigma \right) +E^*\left( \frac{d-2(l_1+1)q}{2d(l_1+1)}\sigma \right) ,\\ \end{aligned}$$
$$\begin{aligned} ZQ_{7,e}&\overset{d}{=}\frac{(T-\mu )(m-1-l_2)q+d\mu }{d} +\varGamma ^*\left( d-m-1+j,\frac{q\sigma }{d}\right) \\ {}&+\varGamma ^*\left( m-1-j,-\frac{q\sigma }{d}\right) \\&+E^*\left( \frac{(l_2-l_1)q+d}{d(l_1+l_2+2)}\sigma \right) +E^*\left( \frac{d-2(l_1+1)q}{2d(l_1+1)}\sigma \right) ,\\ ZQ_{7,o}&\overset{d}{=}\frac{(T-\mu )(m-l_2)q+d\mu }{d} +\varGamma ^*\left( d-m-1+j,\frac{q\sigma }{d}\right) \\ {}&+\varGamma ^*\left( m-j,-\frac{q\sigma }{d}\right) +E^*\left( \frac{(l_2-l_1)q+d}{d(l_1+l_2+1)}\sigma \right) ,\\ ZQ_{8,e}&\overset{d}{=}\frac{(T-\mu )(m-l_1-1)q+dT}{d} +\varGamma ^*\left( d-m-1+j,\frac{q\sigma }{d}\right) \\ {}&+\varGamma ^*\left( m-1-j,-\frac{q\sigma }{d}\right) \\&+E^*\left( \frac{(l_2-l_1)q+d}{d(l_1+l_2+2)}\sigma \right) +E^*\left( \frac{d-2(l_1+1)q}{2d(l_1+1)}\sigma \right) ,\\ ZQ_{8,o}&\overset{d}{=}\frac{(T-\mu )(m-l_1)q+dT}{d} +\varGamma ^*\left( d-m-1+j,\frac{q\sigma }{d}\right) \\ {}&+\varGamma ^*\left( m-j,-\frac{q\sigma }{d}\right) +E^*\left( \frac{(l_2-l_1)q+d}{d(l_1+l_2+1)}\sigma \right) ,\\ ZQ_9&\overset{d}{=} \frac{(T-\mu )(m-1-l)q+d\mu }{d} +\varGamma ^*\left( d-2,\frac{q\sigma }{d}\right) +E^*\left( \frac{nq-d}{nd}\sigma \right) \\ {}&+E^*\left( \frac{2(l+1)q+d}{2d(l+1)}\sigma \right) ,\\ ZQ_{10}&\overset{d}{=} \frac{(T-\mu )nq+d(T+\mu )}{2d} +\varGamma ^*\left( d-2,\frac{q\sigma }{d}\right) +E^*\left( \frac{nq-d}{nd}\sigma \right) \\ {}&+E^*\left( \frac{2(l+1)q+d}{2d(l+1)}\sigma \right) ,\\ ZQ_{11,e}&\overset{d}{=}\frac{(T-\mu )(n-d+l_2)q+\mu d}{d} +\varGamma ^*\left( d-j+m-1,\frac{q\sigma }{d}\right) \\ {}&+\varGamma ^*\left( j-m-1,-\frac{q\sigma }{d}\right) \\&+E^*\left( \frac{nq-d}{nd}\sigma \right) +E^*\left( \frac{(m-l_1-1)q-d}{d(m+l_1+1)}\sigma \right) ,\\ ZQ_{11,o}&\overset{d}{=}\frac{(T-\mu )(n-d+l_2)q+\mu d}{d} +\varGamma ^*\left( d-j+m,\frac{q\sigma }{d}\right) \\ {}&+\varGamma ^*\left( j-m-1,-\frac{q\sigma }{d}\right) +E^*\left( \frac{(m-l_1)q-d}{d(m+l_1+1)}\sigma \right) ,\\ ZQ_{12}&\overset{d}{=} \varGamma ^*\left( d,\frac{q+\log \left( \frac{n}{2d}\right) }{d}\sigma \right) ,\\ ZQ_{13}&\overset{d}{=} \varGamma ^*\left( m-1,\frac{q}{m}\sigma \right) \\ {}&+E^*\left( \frac{2q-1}{n}\sigma \right) ,\\ ZQ_{14,e}&\overset{d}{=} \varGamma ^*\left( m-1,\frac{q}{d}\sigma \right) +\varGamma ^*\left( d-m-1,-\frac{q}{d}\sigma \right) +E^*\left( \frac{nq-d}{nd}\sigma \right) \\ {}&+E^*\left( \frac{(m-l-1)q-d}{d(m+l+1)}\sigma \right) ,\\ ZQ_{14,o}&\overset{d}{=} \varGamma ^*\left( m,\frac{q}{d}\sigma \right) +\varGamma ^*\left( d-m-1,-\frac{q}{d}\sigma \right) +E^*\left( \frac{(m-l)q-d}{d(m+l+1)}\sigma \right) . \end{aligned}$$

1.2 Proof of Result 16.1

Here, we will present the detailed proof for the derivation of the MLEs for the case when \(d<\frac{n}{2}\) and abstain from presenting the proofs for all other cases for the sake of brevity since their derivations are quite similar. Even though it will not be known whether T is greater than \(\mu \) or not, it is clear that the density in (16.3) will take on two different forms and so we will first find the MLE of \(\mu \) based on the two cases \(T\ge \mu \) and \(T\le \mu \) separately. Then, finally the MLE of \(\mu \) is determined by comparing the likelihood values under these two cases.

Case I: \(T\ge \mu \)

In this case, we readily obtain the MLE of \(\mu \) as \(\hat{\mu }_1=T\), and the corresponding likelihood to be

$$\begin{aligned} L_1(T, \sigma )= & {} \frac{C_d}{2^n\sigma ^d}e^{-\frac{dT-\sum _{i=1}^dx_{i:n}}{\sigma }}. \end{aligned}$$
(16.30)

Case II: \(T\le \mu \)

In this case, from the likelihood function \(L_2\), we obtain the MLE of \(\mu \) as

$$\begin{aligned} \hat{\mu }_2=T+\sigma \log \left( \frac{n}{2d}\right) . \end{aligned}$$
(16.31)

Since for any \(\sigma \), \(L_1(T, \sigma )=L_2(T, \sigma )<L_2(\hat{\mu }_2, \sigma )\), we now obtain

$$\begin{aligned} \hat{\mu }=T+\hat{\sigma }\log \left( \frac{n}{2d}\right) , \end{aligned}$$
(16.32)

as given in (16.4). Then, the MLE of \(\sigma \) can be obtained from the profile likelihood function to be

$$\begin{aligned} \hat{\sigma }=\frac{1}{d}\sum _{i=1}^d\left( T-X_{i:n}\right) , \end{aligned}$$
(16.33)

as given in (16.5).

Proof of Result 16.2.

We shall consider the two cases \(\mu <T\) and \(\mu \ge T\) separately.

Case I: \(\mu < T.\) In this case, we have

$$\begin{aligned} E[e^{t\hat{\sigma }}|D>0]= & {} \sum _{d=1}^m\sum _{j=0}^d E\left[ e^{t\hat{\sigma }}|D=d, J=j\right] P(D=d, J=j|D>0) \nonumber \\&+\sum _{d=m+1}^n\sum _{j=0}^d E\left[ e^{t\hat{\sigma }}|D=d, J=j\right] P(D=d, J=j|D>0). \end{aligned}$$
(16.34)

The joint distribution of J and D, conditional on \(D>0\), is

$$\begin{aligned} \nonumber P(D=d, J=j|D>0) \nonumber= & {} P(J=j|D=d)\frac{P(D=d,D>0)}{P(D>0)}\\= & {} (1-p_0)^{-1} 2^{-n} {d\atopwithdelims ()j} {n\atopwithdelims ()d} \left( 1-e^{-\frac{T-\mu }{\sigma }}\right) ^{d-j} e^{-\frac{(T-\mu )(n-d)}{\sigma }}. \end{aligned}$$
(16.35)

Now, the joint distribution of \(X_{1:d},\cdots ,X_{d:d}\), conditional on \(D=d\) and \(J=j\), is given by

$$\begin{aligned} \nonumber&f(X_{1:d},\cdots ,X_{d:d}|D=d,J=j)=j!(d-j)!\prod _{i=1}^j\frac{1}{\sigma }e^{-\frac{\mu -x_{i:d}}{\sigma }} \prod _{i=j+1}^d\frac{\frac{1}{\sigma }e^{-\frac{x_{i:d}-\mu }{\sigma }}}{1-e^{-\frac{T-\mu }{\sigma }}},\\&\qquad \qquad \qquad \qquad \qquad \qquad x_{1:d}<\cdots<x_{j:d}<\mu<x_{j+1:d}<\cdots<x_{d:d}<T. \end{aligned}$$
(16.36)

For the case when \(D\le \frac{n}{2}\), and given \(J=j\), we find

$$\begin{aligned} \hat{\sigma }|_{D=d,J=j}\overset{d}{=}\sum _{i=1}^jE\left( \frac{\sigma }{d}\right) +\sum _{i=j+1}^d E_R^*\left( \frac{\sigma }{d},T-\mu \right) +T-\mu , \end{aligned}$$
(16.37)

where \(E^*(\theta )\) denotes the negative exponential distribution with scale parameter \(\theta \), that is, if X follows the exponential distribution, then \(-X\) is negative exponentially distributed, i.e., \(X\sim E(\theta )\), \(-X\sim E^*(\theta )\), and \(E_R^*\left( \sigma ,T\right) \) denotes a negative exponential distribution right truncated at time T. Then, we have the conditional MGF of \(\hat{\sigma }\) as

$$\begin{aligned} \nonumber E[e^{t\hat{\sigma }}|D=d,J=j]= & {} e^{t(T-\mu )} \left( 1-\frac{t\sigma }{d}\right) ^{-j}\left( 1+\frac{t\sigma }{d}\right) ^{-(d-j)} \left\{ \frac{1-e^{-(T-\mu )(\frac{1}{\sigma }+\frac{t}{d})}}{1-e^{-\frac{T-\mu }{\sigma }}}\right\} ^{d-j}\\= & {} \nonumber \sum _{l=0}^{d-j} {d-j \atopwithdelims ()l} (-1)^l \left( 1-e^{-\frac{T-\mu }{\sigma }}\right) ^{-(d-j)} e^{-\frac{(T-\mu )l}{\sigma }} e^{(T-\mu )\frac{(d-l)t}{d}}\\&\times \left( 1-\frac{t\sigma }{d}\right) ^{-j}\left( 1+\frac{t\sigma }{d}\right) ^{-(d-j)}. \end{aligned}$$
(16.38)

For the case when \(D>m\), we need to consider \(J\le m\) and \(J>m\) separately. When \(J\le m\), similarly, we will have the first j failures as i.i.d. exponential random variables, denoted by \(X_1,\cdots ,X_j.\) For the remaining \(d-j\) failures, we may consider them as \(m-j\) i.i.d. failures before \(X_{m+1:d}\) and \(d-m-1\) i.i.d. failures after \(X_{m+1:d}\) with \(\mu<X_{m+1:d}<T\), denoted by \(X_{j+1},\cdots ,X_{m}\) and \(X_{m+2},\cdots ,X_{d}\), respectively.

The joint pdf \(\mathbf{X}=(X_1,\cdots ,X_m, X_{m+1:d},X_{m+2},\cdots ,X_d)\) is given by

$$\begin{aligned} \nonumber f(\mathbf{X}|D=d,J=j)= & {} \frac{(d-j)!}{(m-j)!(d-m-1)!}\left( \prod _{i=1}^j\frac{1}{\sigma }e^{-\frac{\mu -x_i}{\sigma }}\right) \left( \prod _{i=j}^m\frac{\frac{1}{\sigma }e^{-\frac{x_i-\mu }{\sigma }}}{1-e^{-\frac{T-\mu }{\sigma }}}\right) \\&\times \left( \frac{\frac{1}{\sigma }e^{-\frac{x_{m+1:d}-\mu }{\sigma }}}{1-e^{-\frac{T-\mu }{\sigma }}}\right) \left( \prod _{i=m+2}^d\frac{\frac{1}{\sigma }e^{-\frac{x_i-\mu }{\sigma }}}{1-e^{-\frac{T-\mu }{\sigma }}}\right) , \nonumber \\&\nonumber x_{1},\cdots ,x_{j}<\mu<x_{j+1},\cdots ,x_m<x_{m+1:d}<x_{m+2},\cdots ,x_d<T.\\ \end{aligned}$$
(16.39)

Then, the conditional MGF can be derived as follows:

$$\begin{aligned} \nonumber&E[e^{t\hat{\sigma }}|J=j,D=d]\\ \nonumber= & {} \frac{(d-j)!}{(m-j)!(d-m-1)!} \left( {1-e^{-\frac{T-\mu }{\sigma }}}\right) ^{-(d-j)} e^{\frac{(n-d)(T-\mu )t}{d}} \left[ \int _{-\infty }^\mu \frac{1}{\sigma } e^{-(\mu -x)(\frac{1}{\sigma }-\frac{t}{d})}dx\right] ^j\\&\nonumber \times \int _{\mu }^T \left[ \int _{\mu }^{x_{m+1:d}}\frac{1}{\sigma } e^{-(x-\mu )(\frac{1}{\sigma }+\frac{t}{d})}dx\right] ^{m-j} \left[ \int _{x_{m+1:d}}^T\frac{1}{\sigma } e^{-(x-\mu )(\frac{1}{\sigma }-\frac{t}{d})}dx\right] ^{d-m-1}\\ \nonumber&\times \frac{1}{\sigma } e^{-(x_{m+1:d}-\mu )(\frac{1}{\sigma }-\frac{t}{d})}dx_{m+1:d}\\ \nonumber= & {} \sum _{l_1=0}^{m-j} \sum _{l_2=0}^{d-m-1} (-1)^{l_1+d-m-1-l_2} {m-j \atopwithdelims ()l_1} {d-m-1\atopwithdelims ()l_2} \frac{(d-j)!}{(m-j)!(d-m-1)!}\\&\nonumber \times (l_1+l_2+1)^{-1} \left( {1-e^{-\frac{T-\mu }{\sigma }}}\right) ^{-(d-j)} e^{(T-\mu )\left( \frac{(m-1-l_2)t}{d}-\frac{d-m-1-l_2}{\sigma }\right) } \left( 1+\frac{t\sigma }{d}\right) ^{-(m-j)} \\ \nonumber&\times \left( 1-\frac{t\sigma }{d}\right) ^{-(j+d-m-1)} \left\{ 1-\frac{t(l_2+1-l_1)\sigma }{d(l_1+l_2+1)}\right\} ^{-1} \left\{ 1- e^{-(T-\mu )\left[ \frac{l_1+l_2+1}{\sigma }-\frac{t(l_2+1-l_1)}{d}\right] }\right\} . \end{aligned}$$

We can similarly derive the conditional MGF for the case when \(J>m.\)

Case II: \(\mu >T.\) In this case, we have

$$\begin{aligned} \nonumber P(D=d|D>0)= & {} (1-q_0)^{-1} {n \atopwithdelims ()d} [F(T)]^{d}[1-F(T)]^{n-d}\\= & {} (1-q_0)^{-1} {n \atopwithdelims ()d} \left( \frac{1}{2}e^{-\frac{\mu -T}{\sigma }}\right) ^{d} \left( 1-\frac{1}{2}e^{-\frac{\mu -T}{\sigma }}\right) ^{n-d}. \end{aligned}$$
(16.40)

Now, by adopting a similar procedure, we can obtain the corresponding conditional MGF. Finally, upon combining these expressions, we obtain the conditional MGF presented in Result 16.2.

1.3 Marginal and Joint CDF of \(W_1\) and \(W_2\)

To derive the marginal and joint CDF of \(W_1\) and \(W_2\) as described in Lemma 16.1, we first need the following lemma.

Lemma 16.2

Let \(Y_1\sim \varGamma (\alpha _1,\beta _1)\) and \(Y_2\sim \varGamma (\alpha _2,\beta _2)\) be independent variables with integer shape parameters \(\alpha _1\) and \(\alpha _2\) and \(\beta _1,\beta _2>0.\) Let \(Y=Y_1-Y_2.\) Then, the CDF of Y, denoted by \(\varGamma (y,\alpha _1,\alpha _2,\beta _1,\beta _2)\), is given by

$$\begin{aligned} \varGamma (y,\alpha _1,\alpha _2,\beta _1,\beta _2)= & {} P(Y_1\le y+y_2)=1-P(Y_1>y+y_2)\\= & {} 1-\sum \limits _{i=0}^{\alpha _1-1} \int _0^\infty \frac{1}{i!}\left( \frac{y+y_2}{\beta _1}\right) ^i e^{-\frac{y+y_2}{\beta _1}}\frac{y_2^{\alpha _2-1}e^{-\frac{y_2}{\beta _2}}}{\varGamma (\alpha _2)\beta _2^{\alpha _2}}dy_2\\= & {} 1-\frac{\beta _1^{\alpha _2}}{\varGamma (\alpha _2)\left( \beta _1+\beta _2\right) ^{\alpha _2}} \sum \limits _{i=0}^{\alpha _1-1}\sum \limits _{j=0}^{i} \frac{\varGamma (\alpha _2+j)\beta _1^{j-i}\beta _2^jy^{i-j}e^{-\frac{y}{\beta _1}}}{(i-j)!j!\left( \beta _1+\beta _2\right) ^j}, \qquad y\ge 0; \end{aligned}$$
$$\begin{aligned} \varGamma (y,\alpha _1,\alpha _2,\beta _1,\beta _2)= & {} P(Y_2\ge y_1-y)\\= & {} \frac{\beta _2^{\alpha _1}}{\varGamma (\alpha _1)\left( \beta _1+\beta _2\right) ^{\alpha _1}} \sum \limits _{i=0}^{\alpha _2-1}\sum \limits _{j=0}^{i} \\&\times \frac{\varGamma (\alpha _1+j)\beta _2^{j-i}\beta _1^j(-y)^{i-j}e^{\frac{y}{\beta _2}}}{(i-j)!j!\left( \beta _1+\beta _2\right) ^j}, \quad y<0. \end{aligned}$$

Now, the corresponding PDF is given by

$$\begin{aligned} f(y)= {\left\{ \begin{array}{ll} \frac{\beta _1^{\alpha _2-\alpha _1}}{\varGamma (\alpha _2)\left( \beta _1+\beta _2\right) ^{\alpha _2}} \sum \limits _{j=0}^{\alpha _1-1} \frac{\varGamma (\alpha _2+j)\beta _1^j\beta _2^jy^{\alpha _1-j-1}e^{-\frac{y}{\beta _1}}}{(\alpha _1-j-1)!j!\left( \beta _1+\beta _2\right) ^j}, &{} y\ge 0,\\ \frac{\beta _2^{\alpha _1-\alpha _2}}{\varGamma (\alpha _1)\left( \beta _1+\beta _2\right) ^{\alpha _1}} \sum \limits _{j=0}^{\alpha _2-1} \frac{\varGamma (\alpha _1+j)\beta _1^j\beta _2^j(-y)^{\alpha _2-j-1}e^{\frac{y}{\beta _2}}}{(\alpha _2-j-1)!j!\left( \beta _1+\beta _2\right) ^j}, &{} y<0. \end{array}\right. } \end{aligned}$$

The marginal distribution of \(W_2\) is either exponential or is a linear combination of two exponential variables, and so its CDF is easy to obtain and is therefore omitted for brevity. By using Lemma 16.2, the marginal CDF of \(W_1\) can be readily obtained as presented in the following lemma.

Lemma 16.3

Let \(Y_1\sim \varGamma (\alpha _1,\beta _1)\), \(Y_2\sim N\varGamma (\alpha _2,\beta _2)\), with \(\alpha _1\) and \(\alpha _2\) being positive integer shape parameters and \(\beta _1\) and \(\beta _2>0.\) Further, let \(Z_1\sim E(1)\) and \(Z_2\sim E(1)\), with \(a_1\ne a_2\ne \beta _1~(\text {and}~\beta _2)>0.\) If \(Y_1\), \(Y_2\), \(Z_1\), and \(Z_2\) are all independent, then the CDF of \(W_1=Y_1+Y_2+a_1Z_1-a_2Z_2\) is as follows:

$$\begin{aligned} \nonumber P(W_1\le w_1)= & {} \frac{a_2 e^{\frac{w_1}{a_2}}}{a_1+a_2} \sum \limits _{j=0}^{\alpha _1-1}C_jF\left( w_1,\infty ,\alpha _1-j,\frac{1}{\beta _1}+\frac{1}{a_2}\right) +\varGamma (w_1,\alpha _1,\alpha _2,\beta _1,\beta _2)\\ \nonumber&-\frac{a_1 e^{-\frac{w_1}{a_1}}}{a_1+a_2} \sum \limits _{j=0}^{\alpha _2-1}C_j^*F\left( -\infty ,0,\alpha _2-j,-\frac{1}{\beta _2}-\frac{1}{a_1}\right) \\&-\frac{a_1 e^{-\frac{w_1}{a_1}}}{a_1+a_2} \sum \limits _{j=0}^{\alpha _1-1}C_jF\left( 0,w_1,\alpha _1-j,\frac{1}{\beta _1}-\frac{1}{a_1}\right) , \quad w_1\ge 0; \end{aligned}$$
(16.41)
$$\begin{aligned} \nonumber P(W_1\le w_1)= & {} \frac{a_2 e^{\frac{w_1}{a_2}}}{a_1+a_2} \sum \limits _{j=0}^{\alpha _2-1}C_j^*F\left( w_1,0,\alpha _2-j,\frac{1}{a_2}-\frac{1}{\beta _2}\right) \\&\nonumber + \frac{a_2 e^{\frac{w_1}{a_2}}}{a_1+a_2} \sum \limits _{j=0}^{\alpha _1-1}C_jF\left( 0,\infty ,\alpha _1-j,\frac{1}{\beta _1}+\frac{1}{a_2}\right) +\varGamma (w_1,\alpha _1,\alpha _2,\beta _1,\beta _2)\\&-\frac{a_1 e^{-\frac{w}{a_1}}}{a_1+a_2} \sum \limits _{j=0}^{\alpha _2-1}C_j^*F\left( -\infty ,w_1,\alpha _2-j,-\frac{1}{\beta _2}-\frac{1}{a_1}\right) , \quad w_1<0. \end{aligned}$$
(16.42)

The CDF of \(W_1=Y_1+Y_2+a_1Z_1+a_2Z_2\) is as follows:

$$\begin{aligned} P(W_1\le w_1) \nonumber= & {} \varGamma (w_1,\alpha _1,\alpha _2,\beta _1,\beta _2)-\frac{a_2}{a_2-a_1}e^{-\frac{w_1}{a_2}} \sum \limits _{j=0}^{\alpha _1-1}C_jF\left( 0,w_1,\alpha _1-j,\frac{1}{\beta _1}-\frac{1}{a_2}\right) \\ \nonumber&-\frac{a_2 e^{-\frac{w_1}{a_2}}}{a_2-a_1} \sum \limits _{j=0}^{\alpha _2-1}C_j^*F\left( -\infty ,0,\alpha _2-j,-\frac{1}{\beta _2}-\frac{1}{a_2}\right) \\ \nonumber&+\frac{a_1}{a_2-a_1}e^{-\frac{w}{\theta _1}} \sum \limits _{j=0}^{\alpha _1-1}C_jF\left( 0,w_1,\alpha _1-j,\frac{1}{\beta _1}-\frac{1}{a_1}\right) \\&+\frac{a_1}{a_2-a_1}e^{-\frac{w_1}{a_1}} \sum \limits _{j=0}^{\alpha _2-1}C_j^*F\left( -\infty ,0,\alpha _2-j,-\frac{1}{\beta _2}-\frac{1}{a_1}\right) , \quad w_1\ge 0; \end{aligned}$$
(16.43)
$$\begin{aligned} P(W_1\le w_1) \nonumber= & {} \varGamma (w_1,\alpha _1,\alpha _2,\beta _1,\beta _2) -\frac{a_2 e^{-\frac{w_1}{a_2}}}{a_2-a_1} \sum \limits _{j=0}^{\alpha _2-1}C_j^*F\left( -\infty ,w_1,\alpha _2-j,-\frac{1}{\beta _2}-\frac{1}{a_2}\right) \\&+\frac{a_1 e^{-\frac{w_1}{a_1}}}{a_2-a_1} \sum \limits _{j=0}^{\alpha _2-1}C_j^*F\left( -\infty ,w_1,\alpha _2-j,-\frac{1}{\beta _2}-\frac{1}{a_1}\right) , \quad w_1<0. \end{aligned}$$
(16.44)

By using Lemmas 16.2 and 16.3, the joint CDF of \(W_1\) and \(W_2\) can be derived as presented in Tables 16.10, 16.11, 16.12, 16.13, 16.14, 16.15, 16.16, 16.17, 16.18, 16.19, 16.20, and 16.21. Note in these tables that all the coefficients \(a_1, a_2, b_1\), and \(b_2\) are positive, all the scale parameters \(\beta _1, \beta _2\) are positive, and the shape parameters \(\alpha _1\) and \(\alpha _2\) are positive integers. Moreover, in these tables, we have used the notation

$$\begin{aligned}&r_1=w_1-\frac{a_1w_2}{b_1},\\&r_2=w_1,\\&r_3=w_1+\frac{a_2w_2}{b_2},\\&r_4=w_1+\frac{a_1w_2}{b_1},\\&r_i^*=\max (r_i,0), \qquad i=1,\cdots ,4,\\&S\varGamma \left( l,r,\alpha _1,\alpha _2,\beta _1,\beta _2\right) =\varGamma \left( r,\alpha _1,\alpha _2,\beta _1,\beta _2\right) -\varGamma \left( l,\alpha _1,\alpha _2,\beta _1,\beta _2\right) ,\\&C_j= \frac{\varGamma (\alpha _2+j)\beta _1^{\alpha _2-\alpha _1+j}\beta _2^j}{\varGamma (\alpha _2)(\alpha _1-j-1)!j!\left( \beta _1+\beta _2\right) ^{\alpha _2+j}},\\&C_j^*=\frac{\varGamma (\alpha _1+j)\beta _1^j\beta _2^{\alpha _1-\alpha _2+j}}{\varGamma (\alpha _1)(\alpha _2-j-1)!j!\left( \beta _1+\beta _2\right) ^{\alpha _1+j}},\\&C_\varGamma =\frac{1}{\varGamma (\alpha )\beta ^\alpha },\\ \end{aligned}$$

and

$$\begin{aligned} F\left( l,r,\theta _1,\theta _2\right)= & {} \int _l^rx^{\theta _1-1}e^{-x\theta _2}dx\\= & {} {\left\{ \begin{array}{ll} \frac{\varGamma (\theta _1)}{\theta _2^{\theta _1}}\left( \varGamma (r,\theta _1,\theta _2^{-1})-\varGamma (l,\theta _1,\theta _2^{-1})\right) , &{} \theta _2>0,l>0,\\ \frac{\varGamma (\theta _1)}{(-\theta _2)^{\theta _1}}\left( \varGamma (-l,\theta _1,\theta _2^{-1})-\varGamma (-r,\theta _1,\theta _2^{-1})\right) , &{} \theta _2>0,r<0,\\ \frac{1}{\theta _1}\left( r^{\theta _1}-l^{\theta _1}\right) , &{} \theta _2=0,\\ -\sum \limits _{j=0}^{\theta _1-1}\frac{(\theta _1-1)!}{j!\theta _2^{\theta _1-j}} \left( r^je^{-r\theta _2}-l^je^{-l\theta _2}\right) , &{} \theta _2<0.\\ \end{array}\right. } \end{aligned}$$

By using these results, we can also obtain a more general result for the joint CDF of \(W_1=Y_1+Y_2+a_1Z_1+a_2Z_2\) and \(W_2=b_1Z_1+b_2Z_2\) by using the known results on the joint CDF of \(-W_1\) and \(W_2\) and the CDF of \(W_2\) as

$$\begin{aligned} P(W_1\le w_1, W_2\le w_2)= & {} P(-W_1\ge -w_1, W_2\le w_2)\\= & {} P(W_2\le w_2)-P(-W_1\le -w_1, W_2\le w_2). \end{aligned}$$
Table 16.10 Joint CDF of \(W_1=Y_1+Y_2-a_1Z_1-a_2Z_2\) and \(W_2=b_1Z_1+b_2Z_2\)
Table 16.11 Joint CDF of \(W_1=Y_1+Y_2+a_1Z_1+a_2Z_2\) and \(W_2=b_1Z_1-b_2Z_2.\)
Table 16.12 Joint CDF of \(W_1=Y_1+Y_2+a_1Z_1-a_2Z_2\) and \(W_2=b_1Z_1+b_2Z_2\)
Table 16.13 Joint CDF of \(W_1=Y_1-a_1Z_1-a_2Z_2\) and \(W_2=b_1Z_1+b_2Z_2\)
Table 16.14 Joint CDF of \(W_1=Y_1+a_1Z_1+a_2Z_2\) and \(W_2=b_1Z_1-b_2Z_2\)
Table 16.15 Joint CDF of \(W_1=Y_1+a_1Z_1-a_2Z_2\) and \(W_2=b_1Z_1+b_2Z_2\)
Table 16.16 Joint CDF of \(W_1=Y_1+Y_2+a_1Z_1\) and \(W_2=b_1Z_1+b_2Z_2\)
Table 16.17 Joint CDF of \(W_1=Y_1+Y_2+a_1Z_1\) and \(W_2=b_1Z_1\)
Table 16.18 Joint CDF of \(W_1=Y_1+a_1Z_1\) and \(W_2=b_1Z_1+b_2Z_2\)
Table 16.19 Joint CDF of \(W_1=Y_1-a_1Z_1\) and \(W_2=b_1Z_1+b_2Z_2\)
Table 16.20 Joint CDF of \(W_1=Y_1+a_1Z_1\) and \(W_2=b_1Z_1\)
Table 16.21 Joint CDF of \(W_1=Y_1-a_1Z_1\) and \(W_2=b_1Z_1\)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhu, X., Balakrishnan, N. (2017). Exact Likelihood-Based Point and Interval Estimation for Lifetime Characteristics of Laplace Distribution Based on a Time-Constrained Life-Testing Experiment. In: Adhikari, A., Adhikari, M., Chaubey, Y. (eds) Mathematical and Statistical Applications in Life Sciences and Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-5370-2_16

Download citation

Publish with us

Policies and ethics