Advertisement

Environmental Applications Based on Birnbaum–Saunders Models

  • Víctor Leiva
  • Helton Saulo
Chapter

Abstract

We discuss some environmental applications of methodologies based on the Birnbaum–Saunders model, which is an asymmetrical statistical distribution that is being widely considered to describe data collected in earth sciences. We present a formal justification, by means of the proportionate effect law, to use the Birnbaum–Saunders model as a useful distribution for environmental and regional variables. The methodologies discussed in this work include exceedance probabilities, X-bar control charts, np control charts, and spatial models. Applications with real-world environmental data sets are carried out for each discussed methodology.

Notes

Acknowledgements

The authors thank the editors and reviewers for their constructive comments on an earlier version of this manuscript. This work was partially supported by FONDECYT 1160868 grant from the Chilean government.

References

  1. 1.
    Marchant, C., V. Leiva, M. Cavieres, and A. Sanhueza. 2013. Air contaminant statistical distributions with application to PM10 in Santiago, Chile. Reviews of Environmental Contamination and Toxicology 223: 1–31.Google Scholar
  2. 2.
    Garcia-Papani, F., M. Uribe-Opazo, V. Leiva, and R. Aykroyd. 2016. Birnbaum-Saunders spatial modelling and diagnostics applied to agricultural engineering data. Stochastic Environmental Research and Risk Assessment 31: 105–124.Google Scholar
  3. 3.
    McConnell, R., K. Berhane, F. Gilliland, J. Molitor, D. Thomas, F. Lurmann, E. Avol, W.J. Gauderman, and J.M. Peters. 2003. Prospective study of air pollution and bronchitic symptoms in children with asthma. American Journal of Respiratory and Critical Care Medicine 168: 790–797.CrossRefGoogle Scholar
  4. 4.
    Nuvolone, D., D. Balzi, M. Chini, D. Scala, F. Giovannini, and A. Barchielli. 2011. Short-term association between ambient air pollution and risk of hospitalization for acute myocardial infarction: results of the cardiovascular risk and air pollution in tuscany (RISCAT) study. American Journal of Epidemiology 174: 63–71.CrossRefGoogle Scholar
  5. 5.
    De Bastiani, F., A. Cysneiros, M. Uribe-Opazo, and M. Galea. 2015. Influence diagnostics in elliptical spatial linear models. TEST 24: 322–340.MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Leiva, V., A. Sanhueza, S. Kelmansky, and E. Martínez. 2009. On the glog-normal distribution and its association with the gene expression problem. Computational Statistics and Data Analysis 53: 1613–1621.Google Scholar
  7. 7.
    Johnson, N., S. Kotz, and N. Balakrishnan. 1994. Continuous Univariate Distributions, vol. 1. New York, US: Wiley.Google Scholar
  8. 8.
    Johnson, N., S. Kotz, and N. Balakrishnan. 1995. Continuous Univariate Distributions, vol. 2. New York, US: Wiley.Google Scholar
  9. 9.
    Leiva, V. and S.C. Saunders. 2015. Cumulative damage models. Wiley StatsRef: Statistics Reference Online (available at  http://onlinelibrary.wiley.com/doi/10.1002/9781118445112.stat02136.pub2/abstract) 1–10.
  10. 10.
    Leiva, V. 2016. The Birnbaum-Saunders Distribution. New York, US: Academic Press.MATHGoogle Scholar
  11. 11.
    Leiva, V., E. Athayde, C. Azevedo, and C. Marchant. 2011. Modeling wind energy flux by a Birnbaum-Saunders distribution with unknown shift parameter. Journal of Applied Statistics 38: 2819–2838.Google Scholar
  12. 12.
    Leiva, V., M. Barros, G. Paula, and A. Sanhueza. 2008. Generalized Birnbaum-Saunders distribution applied to air pollutant concentration. Environmetrics 19: 235–249.Google Scholar
  13. 13.
    Leiva, V., M. Ferreira, M.I. Gomes, and C. Lillo. 2016. Extreme value Birnbaum-Saunders regression models applied to environmental data. Stochastic Environmental Research and Risk Assessment 30: 1045–1058.CrossRefGoogle Scholar
  14. 14.
    Leiva, V., C. Marchant, F. Ruggeri, and H. Saulo. 2015. A criterion for environmental assessment using Birnbaum-Saunders attribute control charts. Environmetrics 26: 463–476.MathSciNetCrossRefGoogle Scholar
  15. 15.
    Leiva, V., M. Ponce, C. Marchant, and O. Bustos. 2012. Fatigue statistical distributions useful for modeling diameter and mortality of trees. Revista Colombiana de Estadística 35: 349–367.MathSciNetMATHGoogle Scholar
  16. 16.
    Leiva, V., A. Sanhueza, and J.M. Angulo. 2009. A length-biased version of the Birnbaum-Saunders distribution with application in water quality. Stochastic Environmental Research and Risk Assessment 23: 299–307.Google Scholar
  17. 17.
    Leiva, V., A. Sanhueza, A. Silva, and M. Galea. 2008. A new three-parameter extension of the inverse Gaussian distribution. Statistical and Probability Letters 78: 1266–1273.Google Scholar
  18. 18.
    Leiva, V., F. Vilca, N. Balakrishnan, and A. Sanhueza. 2010. A skewed sinh-normal distribution and its properties and application to air pollution. Communications in Statistics: Theory and Methods 39: 426–443.MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Podlaski, R. 2008. Characterization of diameter distribution data in near-natural forests using the Birnbaum-Saunders distribution. Canadian Journal of Forest Research 18: 518–527.CrossRefGoogle Scholar
  20. 20.
    Balakrishnan, N., V. Leiva, A. Sanhueza, and E. Cabrera. 2009. Mixture inverse Gaussian distribution and its transformations, moments and applications. Statistics 43: 91–104.MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Kotz, S., V. Leiva, and A. Sanhueza. 2010. Two new mixture models related to the inverse Gaussian distribution. Methodology and Computing in Applied Probability 12: 199–212.MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Vilca, F., A. Sanhueza, V. Leiva, and G. Christakos. 2010. An extended Birnbaum-Saunders model and its application in the study of environmental quality in Santiago, Chile. Stochastic Environmental Research and Risk Assessment 24: 771–782.CrossRefGoogle Scholar
  23. 23.
    Vilca, F., L. Santana, V. Leiva, and N. Balakrishnan. 2011. Estimation of extreme percentiles in Birnbaum-Saunders distributions. Computational Statistics and Data Analysis 55: 1665–1678.MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Ferreira, M., M.I. Gomes, and V. Leiva. 2012. On an extreme value version of the Birnbaum-Saunders distribution. Revstat Statistical Journal 10: 181–210.MathSciNetMATHGoogle Scholar
  25. 25.
    Saulo, H., V. Leiva, and F. Ruggeri. 2015. Monitoring environmental risk by a methodology based on control charts. In Theory and Practice of Risk Assessment, ed. C. Kitsos, T. Oliveira, A. Rigas, and S. Gulati, 177–197. Switzerland: Springer.CrossRefGoogle Scholar
  26. 26.
    Saulo, H., V. Leiva, F.A. Ziegelmann, and C. Marchant. 2013. A nonparametric method for estimating asymmetric densities based on skewed Birnbaum-Saunders distributions applied to environmental data. Stochastic Environmental Research and Risk Assessment 27: 1479–1491.CrossRefGoogle Scholar
  27. 27.
    Raaijmakers, F. 1980. The lifetime of a standby system of units having the Birnbaum-Saunders distribution. Journal of Applied Probability 17: 490–497.MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Raaijmakers, F. 1981. Reliability of standby system for units with the Birnbaum-Saunders distribution. IEEE Transactions on Reliability 30: 198–199.CrossRefGoogle Scholar
  29. 29.
    Fox, E., B. Gavish, and Semple, J. 2008. A general approximation to the distribution of count data with applications to inventory modeling. Available at https://papers.ssrn.com/sol3/papers.cfm?abstract_id=979826
  30. 30.
    Leiva, V., G. Soto, E. Cabrera, and G. Cabrera. 2011. New control charts based on the Birnbaum-Saunders distribution and their implementation. Revista Colombiana de Estadística 34: 147–176.Google Scholar
  31. 31.
    Leiva, V., A. Sanhueza, P. Sen, and G. Paula. 2008. Random number generators for the generalized Birnbaum-Saunders distribution. Journal of Statistical Computation and Simulation 78: 1105–1118.Google Scholar
  32. 32.
    Kundu, D., N. Kannan, and N. Balakrishnan. 2008. On the hazard function of Birnbaum-Saunders distribution and associated inference. Computational Statistics and Data Analysis 52: 2692–2702.MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Birnbaum, Z.W., and S.C. Saunders. 1969. Estimation for a family of life distributions with applications to fatigue. Journal of Applied Probability 6: 328–347.Google Scholar
  34. 34.
    Engelhardt, M., L. Bain, and F. Wright. 1981. Inferences on the parameters of the Birnbaum-Saunders fatigue life distribution based on maximum likelihood estimation. Technometrics 23: 251–256.MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Ng, H.K.T., D. Kundu, and N. Balakrishnan. 2003. Modified moment estimation for the two-parameter Birnbaum-Saunders distribution. Computational Statistics and Data Analysis 43: 283–298.MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Ross, S. 1983. Stochastic Processes. New York, US: Wiley.MATHGoogle Scholar
  37. 37.
    Birnbaum, Z.W., and S.C. Saunders. 1969. A new family of life distributions. Journal of Applied Probability 6: 319–327.Google Scholar
  38. 38.
    Desmond, A. 1986. On the relationship between two fatigue life models. IEEE Transactions on Reliability 35: 167–169.CrossRefMATHGoogle Scholar
  39. 39.
    Abramowitz, M., and I. Stegun. 1972. Handbook of Mathematical Functions. New York, US: Dover Press.Google Scholar
  40. 40.
    Ott, W. 1999. A physical explanation of the lognormality of pollution concentrations. Journal of the Air and Waste Management Association 40: 1378–1383.CrossRefGoogle Scholar
  41. 41.
    Desmond, A. 1985. Stochastic models of failure in random environments. Canadian Journal of Statistics 13: 171–183.MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Aitchison, J., and J. Brown. 1973. The Lognormal Distribution. London, UK: Cambridge University Press.Google Scholar
  43. 43.
    Cramér, H. 1946. Mathematical Methods of Statistics. Princeton, US: Princeton University Press.Google Scholar
  44. 44.
    Box, L. 2000. Statistical issues in the study of air pollution involving airborne particulate matter. Environmetrics 11: 611–626.CrossRefGoogle Scholar
  45. 45.
    Clyde, M. 2000. Model uncertainty and health effect studies for particulate matter. Environmetrics 11: 745–763.CrossRefGoogle Scholar
  46. 46.
    Manly, B. 2009. Statistics for Environmental Science and Management. Boca Raton: Chapman and Hall.Google Scholar
  47. 47.
    Krige, D. 1951. A statistical approach to some basic mine valuation problems on the Witwatersrand. Journal of the Chemical, Metallurgical and Mining Society of South Africa 52: 119–139.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.School of Industrial EngineeringPontificia Universidad católica de ValparaísoValparaísoChile
  2. 2.Department of StatisticsUniversity of BrasiliaBrasiliaBrazil

Personalised recommendations