Bivariate Frailty Model and Association Measure

  • Ramesh C. Gupta


In this paper, we present a bivariate frailty model and the association measure. The relationship between the conditional and the unconditional hazard gradients are derived and some examples are provided. A correlated frailty model is presented and its application in the competing risk theory is given. Some applications to real data sets are also pointed out.


Hazard gradient Bivariate proportional hazard model Bivariate additive model Association measure Correlated frailty model Competing risk 



The author is thankful to the referee for some useful suggestions which enhanced the presentation.


  1. 1.
    Agresti, A., B. Caffo, and P. Ohman-Strickland. 2004. Examples in which misspecification of a random effects distribution reduces efficiency and possible remedies. Compuatational Statistics and Data Analysis 47: 639–653.MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Clayton, D.G. 1978. A model for association in bivariate life tables and its application in epidemiological studies of family tendancy in chronic disease incidence. Biometrika 65: 141–151.MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Clayton, D.G., and J. Cuzick. 1985. Multivariate generalization of the proprtional hazard model. Journal of the Royal Statistical Society, Sereis A 148: 82–117.CrossRefMATHGoogle Scholar
  4. 4.
    Duchateau, L., and P. Janssen. 2008. The Frailty Model. NY: Springer.MATHGoogle Scholar
  5. 5.
    Finkelstein, M.S., and V. Esaulova. 2006. Asymptotic behaviour of a general class of mixture failure rates. Advances in Applied Probability 38 (1): 244–262.MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Gupta, P.L., and R.C. Gupta. 1996. Ageing charaterstics of the Weibull mixtures. Probability in the Engineering and Informational Sciences 10: 591–600.Google Scholar
  7. 7.
    Gupta, R.C., and R.D. Gupta. 2009. General frailty model and stochastic orderings. Journal of Statistical Planning and Inference 139: 3277–3287.MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Gupta, R.C., and R.D. Gupta. 2010. Random effect survival models and stochastic comparisons. Journal of Applied Probability 47: 426–440.MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Gupta, R.C. 2010. Reliability functions of bivariate distributions in modeling marked point processes. Stochastic Models 26 (2): 195–211.MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Gupta, R.C., and S.N. Kirmani. 2006. Stochastic comparisons in frailty models. Journal of Statistical Planning and Inference 136: 3647–3658.Google Scholar
  11. 11.
    Gupta, R.C. 2016. Properties of additive frailty model in survival analysis. Metrika 79: 1–17.MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Hens, N., A. Wienke, M. Aerts, and G. Molenberghs. 2009. The correlated and shared gamma frailty model for bivariate current status data: an illustration for cross-sectional serological data. Statistics in Medicine 28: 2785–2800.MathSciNetCrossRefGoogle Scholar
  13. 13.
    Hanagal, D.D. 2011. Modeling Survival Data Using Frailty Models. Boca Raton, FL: Chapman and Hall.CrossRefGoogle Scholar
  14. 14.
    Hanagal, D.D., and A.D. Dabade. 2015. Comparison of shared frailty models for kidney infection data under exponential power baseline distribution. Communications in Statistics, Theory and Methods 44: 5091–5108.MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Heckman, J.J., and B. Singer. 1984. The identifibility of the proportional hazard model. Review Economic Studies 231–241.Google Scholar
  16. 16.
    Hougaard, P. 1984. Lifetable methods for heterogeneous populations: distributions describing the heterogeneity. Biometrika 71: 75–83.MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Hougaard, P. 1991. Modeling hetereogeneity in survival data. Journal of Applied Probability 28: 695–701.MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Hougaard, P. 1995. Frailty models for survival data. Lifetime Data Analysis 1: 255–273.CrossRefGoogle Scholar
  19. 19.
    Hougaard, P. 2000. Analysis of Multivariate Survival Data. New York: Springer.CrossRefMATHGoogle Scholar
  20. 20.
    Kersey, H., D. Weisdorf, M.E. Nesbit, T.W. Lebien, P.B. McGlave, T. Kim, D.A. Vellera, A.I. Goldman, B. Bostrom, D. Hurd, and N.K.C. Ramsay. 1987. Comparison of autologous and allogenic bone merrow transplantation for treatment of high-risk refractory acute lymphoblastic leukemia. New England Journal of Medicine 317: 461–467.CrossRefGoogle Scholar
  21. 21.
    Keiding, N., and P.K. Andersen. 1997. The role of frailty models and accelerated failure time models in describing heterogeneity due to omitted covariates. Statistics in Medicine 16: 215–224.Google Scholar
  22. 22.
    Korsgaard, I.R., and A.H. Anderson. 1998. The additive genetic gamma frailty model. Scandinavian Journal of Statistics 25: 255–269.MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Lambert, P., D. Collett, A. Kimber, and R. Johnson. 2004. Parametric accelerated failure time models with random effects and an application to kidney transplant survival. Statistics in Medicine 23: 3177–3192.CrossRefGoogle Scholar
  24. 24.
    Liang, K.Y., S.G. Self, K.J. Bandeen-Roche, and S. Zeger. 1995. Some recent developments for regression analysis of multivariate failure time data. Lifetime Data Analysis 1: 403–406.Google Scholar
  25. 25.
    Manatunga, A.K., and D. Oakes. 1996. A measure of association for bivariate frailty ditributions. Journal of Multivariate Analysis 56: 60–74.MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Missov, T.I., and M.S. Finkelstein. 2011. Admissible mixing distributions for a general class of mixture survival models with known asymptotics. Theoretical Population Biology 80 (1): 64–70.CrossRefGoogle Scholar
  27. 27.
    Rizopoulos, D., G. Verbke, and G. Molenberghs. 2008. Shared parameter models under random effect misspecification. Biometrika 95 (1): 63–74.MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Sargent, D.J. 1998. A general framework for random effects survival analysis in the Cox proportional hazards setting. Biometrics 54: 1486–1497.CrossRefMATHGoogle Scholar
  29. 29.
    Oakes, D. 1989. Bivariate survival models induced by frailties. Journal of the American Statistical Association 84: 497–493.MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Pan, W. 2001. Using frailties in the accelarated failure time model (2001). Lifetime Data Analysis 7: 55–64.MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Price, D.L., and A.K. Manatunga. 2001. Modelling survival data with a cure fraction using frailty models. Statistics in Medicine 20: 1515–1527.CrossRefGoogle Scholar
  32. 32.
    Vaupel, J.W., K.G. Manton, and E. Sttalard. 1979. The impact of heterogeneity in individual frailty on the dynamics of mortality. Demography 16 (3): 439–454.CrossRefGoogle Scholar
  33. 33.
    Wienke, A., P. Lichtenstein, and A.I. Yashin. 2003. A bivariate frailty model with a cure fraction for modelling familial correlations in diseases. Biometrics 59: 1178–1183.MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Wienke, A., I. Licantelli, and A.I. Yashin. 2006. the modeling of a cure fraction in bivariate time to event data. Austrian Journal of Statistics 35 (1): 67–76.CrossRefGoogle Scholar
  35. 35.
    Wienke, A. 2010. Frailty Models in Survival Analysis. Boca Raton: Chapman & Hall/CRC.CrossRefGoogle Scholar
  36. 36.
    Xue, X., and A.Y. Ding. 1999. Assesing heterogeneity and correlation of paired failure times with the bivariate frailty model. Statistics in Medicine 18: 907–918.CrossRefGoogle Scholar
  37. 37.
    Yin, G., and J.G. Ibrahim. 2005. A class of Bayesian shared gamma frailty models with multivariate failure time data. Biometrics 61: 208–216.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.University of MaineOronoUSA

Personalised recommendations