Skip to main content

Nutrient Solubilizing Microbes (NSMs): Its Role in Sustainable Crop Production

Abstract

Nowadays the land degradation, deteorating the soil health, is the major constraint, which led to the nutrient depletion and limited potential yield of crops toward the food security worldwide. To enhance the crop production, soil sustainability is one of the ideal and sustainable approaches to overcome depleting the soil fertility status and land degradation. The rhizospheric beneficial microorganisms (RBMs) may offers rate of plant growth, agronomically, pathogenically, and environmentally advantage for intensive agricultural production system. The nitrogen-fixing rhizobacteria (NFR) fix atmospheric nitrogen in the soil, while phosphate-solubilizing microorganisms solubilize the insoluble phosphorus (P) in the soil, potassium-solubilizing rhizobacteria (KSR) mobilizes the stable potassium in field, and similarly other microorganisms mobilize nutrients in soil and make it easily available to the crop plants. These NFR include symbiotic N2-fixing forms, in leguminous plants, viz., Rhizobium, and obligate symbionts in nonleguminous plant comprising species Alcaligenes, Azomonas, Beijerinckia, Achromobacter, Acetobacter, Arthrobacter, and Bacillus spp.; however, P is the primary essential macronutrient for vegetative and reproductive development of the plants. The majority of phosphorus in most soil is insoluble form and cannot be used by crops. Some important species are Aspergillus, Bacillus, Pseudomonas, Penicillium, etc., which secrete organic acids (products) that lower pH in their vicinity and help to bring the dissolution of fixed phosphates in soil. Additionally seed bio-priming can provide ~30 kg P2O5/ha. In soil system potassium (K) is associative to movement of water, nutrients, carbohydrates, and cellular and osmotic pressure in plant tissues. Supposing potassium is lacking or not provided in suitable amount, growth of the plants stunts and production reduces. Several bacterial species particularly rhizosphere-colonizing bacteria have been found, which solubilize insoluble inorganic phosphate like that tri-calcium phosphate (TCP), di-calcium phosphate (DCP), hydroxylapatite, and rock phosphate. It is already proved that application of Zn in the form of chemical fertilizer is inappropriate due to its unavailability to crop plants. In the recent past, rhizobacteria have exhibited terrific ability to improve zinc availability in root zone and enhance zinc in plants. In rice, silicate-solubilizing rhizobacteria (SSR) have gained importance in recent times because of their role in solubilization of silicate minerals, rendering potassium silicate (K2SiO3), and makes readily available potassium (K) and silicon (Si) for crop plants. Recent advancement in biotechnology and genetic engineering have provided new opportunity to find out the presence and abundance of particular microbes or to quantify the expression of target genes directly in soil or in rhizosphere with high levels of sensitivity. Genetically modified strains could be capable of solubilizing more available nutrient from the soil or rhizosphere. Development of genetically modified strains with enhanced mobilization by genetic engineering techniques and DNA technology is needed to maintain an eco-friendly and sustainable agriculture. This chapter focuses on diversifying of nutrient solubilizer/mobilizer microbes, mechanism of solubilization/mobilization, role of various enzymes/auxins/acids effect of various factors on nutrient solubilization, the present and future scenario of their utilization, and potential for application of this knowledge in managing a sustainable environmental ecosystem.

Keywords

  • Microorganism
  • Nutrient
  • Nitrogen
  • Phosphorous
  • Potassium
  • Rhizosphere
  • Silicate

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-10-5343-6_2
  • Chapter length: 37 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-981-10-5343-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 2.1
Fig. 2.2
Fig. 2.3
Fig. 2.4
Fig. 2.5
Fig. 2.6
Fig. 2.7

References

  • Ahmad M, Nadeem SM, Naveed M, Zahir ZA (2016) Potassium-solubilizing bacteria and their application in agriculture. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 293–313. doi:10.1007/978-81-322-2776-2_21

    CrossRef  Google Scholar 

  • Ahmed N, Shahab S (2009) Phosphate solubilization: their mechanism genetics and application. The Internet J Microbiol 9:1–19

    Google Scholar 

  • Alam S, Khalil S, Ayub N, Rashid M (2002) In vitro solubilization of inorganic phosphate by phosphate solubilizing microorganism (PSM) from maize rhizosphere. Int J Agric Biol 4:454–458

    CAS  Google Scholar 

  • Aleksandrov VG (1958) Organo-mineral fertilizers and silica bacteria. Dokl Akad-S Kh Nauk 7:43–48

    Google Scholar 

  • Alloway BJ (2004) In zinc in soil and crop nutrition. International Zinc Association, Brussels

    Google Scholar 

  • Amtmann A, Armengaaud P (2009) Effect of N, P, K and S on metabolism: new knowledge gained from multi-level analysis. Curr Opin Plant Biol 12:275–283

    CAS  PubMed  CrossRef  Google Scholar 

  • Archana DS, Nandish MS, Savalagi VP, Alagawadi AR (2013) Characterization of potassium solubilizing bacteria (KSB) from rhizosphere soil. Bioinfolet 10:248–257

    Google Scholar 

  • Ashbolt NJ, Inkerman PA (1990) Acetic acid bacterial biota of the pink sugarcane mealy bug, Saccharococcus sacchari, and its environs. Appl Environ Microbiol 56:707–712

    CAS  PubMed  PubMed Central  Google Scholar 

  • Avakyan ZA, Pavavarova TA, Karavako GI (1986) Properties of a new species Bacillus mucilaginous. Microbiologica 55:477–482

    CAS  Google Scholar 

  • Bahadur I, Meena VS, Kumar S (2014) Importance and application of potassic biofertilizer in Indian agriculture. Int Res J Biol Sci 3:80–85

    Google Scholar 

  • Bahadur I, Maurya BR, Kumar A, Meena VS, Raghuwanshi R (2016a) Towards the soil sustainability and potassium-solubilizing microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 225–266. doi:10.1007/978-81-322-2776-2_18

  • Bahadur I, Maurya BR, Meena VS, Saha M, Kumar A, Aeron A (2016b) Mineral release dynamics of tricalcium phosphate and waste muscovite by mineral-solubilizing rhizobacteria isolated from indo-gangetic plain of India. Geomicrobiol J. doi:10.1080/01490451.2016.1219431

  • Bahadur I, Maurya BR, Meena VS, Saha M, Kumar A, Aeron A (2017) Mineral release dynamics of tricalcium phosphate and waste muscovite by mineral-solubilizing rhizobacteria isolated from indo-gangetic plain of India. Geomicrobiol J. doi:10.1080/01490451.2016.1219431

  • Bakulin MK, Grudtsyna AS, Pletneva A (2007) Biological fixation of nitrogen and growth of bacteria of the genus Azotobacter in liquid media in the presence of Perfluoro carbons. Appl Biochem Microbiol 4:399–402

    CrossRef  CAS  Google Scholar 

  • Banerjee S, Palit R, Sengupta C, Standing D (2010) Stress induced phosphate solubilization by Arthrobacter spp. and Bacillus spp. isolated from tomato rhizosphere. Aust J Crop Sci 4:378–383

    CAS  Google Scholar 

  • Barker WW, Welch SA, Chu S, Baneld JF (1998) Experimental observations of the effects of bacteria on aluminosilicate weathering. Am Mineral 83:1551–1563

    CAS  CrossRef  Google Scholar 

  • Barre P, Montagnier C, Chenu C, Abbadie L, Velde B (2008) Clay minerals as a soil potassium reservoir : observation and quantification through X-ray diffraction. Plant Soil 302:213–220

    CAS  CrossRef  Google Scholar 

  • Basak BB, Biswas DR (2009) Influence of potassium solubilizing microorganism (Bacillus mucilaginosus) and waste mica on potassium uptake dynamics by sudan grass (Sorghum vulgare Pers.) grown under two alfisols. Plant Soil 317:235–255

    CAS  CrossRef  Google Scholar 

  • Basak BB, Biswas DR (2010) Co-inoculation of potassium solubilizing and nitrogen fixing bacteria on solubilization of waste mica and their effect on growth promotion and nutrient acquisition by a forage crop. Biol Fertil Soils 46:641–648

    CrossRef  Google Scholar 

  • Beijerinck MW (1901) Ueber Oligonitophile Mikroben, Zentralblattfiir Bakteriologie, Parasitenkunde, Infektionskrankheiten and Hygiene. Abteilung II 7:561–582

    Google Scholar 

  • Bhanwariya B, Ram M, Kumawat N, Kumar R (2013) Influence of fertilizer levels and biofertilizers on growth and yield of linseed (Linum usitatissimum L.) under rainfed condition of south Gujarat. Madras Agric J 100(4–6):403–406

    Google Scholar 

  • Biari A, Gholami A, Rahmani HA (2008) Growth promotion and enhanced nutrient uptake of maize (Zea mays L.) by application of plant growth promoting rhizobacteria in arid region of Iran. J Biol Sci 8:1015–1020

    CAS  CrossRef  Google Scholar 

  • Cakmak I (2000) Role of zinc in protecting plant cells from reactive oxygen species. New Phytol 146:185–205

    CAS  CrossRef  Google Scholar 

  • Cakmak I (2009) Enrichment of fertilizers with zinc: an excellent investment for humanity and crop production in India. J Trace Elem Med Biol 23:281–289

    CAS  PubMed  CrossRef  Google Scholar 

  • Cakmak I, Pfeiffer WH, McClafferty B (2010) Biofortification of durum wheat with zinc and iron. Cereal Chem 87:10–20

    CAS  CrossRef  Google Scholar 

  • Cassan F, Perrig D, Sgroy V, Masciarelli O, Penna C, Luna V (2009) Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean ( Glycine max L.) Eur J Soil Biol 45:28–35

    CAS  CrossRef  Google Scholar 

  • Cavalcante VA, Dobereiner J (1988) A new acid-tolerant bacterium associated with sugarcane. Plant Soil 108:23–31

    CrossRef  Google Scholar 

  • Chang CH, Yang SS (2009) Thermo-tolerant phosphate-solubilizing microbes for multi-functional biofertilizer preparation. Bioresour Technol 100:1648–1658

    CAS  PubMed  CrossRef  Google Scholar 

  • Chen YP, Rekha PD, Arun Shen AB, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41

    CrossRef  Google Scholar 

  • Choudhary HR, Sharma OP, Singh RK, Singh K, Kumar R, Yadav L (2013) Influence of organic manures and chemical fertilizer on nutrient uptake, yield and profitability of mungbean [Vigna radiata (L.) Wilczek]. Madras Agric J 100(1–3):747–750

    Google Scholar 

  • Cunninghan JE, Kuiack C (1992) Production of citric acid and oxalic acid and solubilization of calcium phosphate by Penicillium billai. Appl Environ Microbiol 58:1451–1458

    Google Scholar 

  • Das S, Green A (2013) Importance of zinc in crops and human health. J SAT Agric Res 11:1–5

    Google Scholar 

  • Das I, Pradhan M (2016) Potassium-solubilizing microorganisms and their role in enhancing soil fertility and health. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 281–291. doi:10.1007/978-81-322-2776-2_20

    CrossRef  Google Scholar 

  • Datnoff LE, Snyder GH (2001) Silicon in agriculture. Elsevier Publisher, London

    Google Scholar 

  • Dhanasekar R, Dhandapani R (2012) Effect of biofertilizers on the growth of Helianthus annuus. Int J Plant Ani Environ Sci 2:143–147

    Google Scholar 

  • Dominguez-Nunez JA, Benito B, Berrocal-Lobo M, Albanesi A (2016) Mycorrhizal fungi: role in the solubilization of potassium. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 77–98. doi:10.1007/978-81-322-2776-2_6

    CrossRef  Google Scholar 

  • Dotaniya ML, Meena VD, Basak BB, Meena RS (2016) Potassium uptake by crops as well as microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 267–280. doi:10.1007/978-81-322-2776-2_19

    CrossRef  Google Scholar 

  • Ehrlich HL (1981) Geomicrobiology. Marcel Dekker Inc, New York, p 393

    Google Scholar 

  • Epstein E (1994) The anomaly of silicon in plant biology. Proc Natl Acade Sci U S A 91:11–17

    CAS  CrossRef  Google Scholar 

  • Estiyar HK, Khoei FR, Behrouzyar EK (2014) The effect of nitrogen biofertilizer on yield and yield components of white bean (Phaseolus vulgaris cv. Dorsa). Intern Biosci 4:217–222

    Google Scholar 

  • FAO (2011) Current world fertilizer trends and outlook 2015. FAO, Rome

    Google Scholar 

  • Fasim F, Ahmed N, Parsons R, Gadd GM (2002) Solubilization of zinc salts by bacterium isolated by the air environment of tannery. FEMS Microbiol Lett 213:1–6

    CAS  PubMed  CrossRef  Google Scholar 

  • Fred E, Baldwin I, McCoy E (1932) Root nodule bacteria and leguminous plants. University of Wisconsin Stud Sci 5:343

    Google Scholar 

  • Gajera RJ, Khafi HR, Raj AD, Yadav V, Lad AN (2014) Effect of phosphorus and bio-fertilizers on growthyield and economics of summer green gram[Vigna radiata (L.) Wilczek]. Agri Update 9:98–102

    Google Scholar 

  • Gaur AC (1990) Phosphate solubilizing microorganisms as biofertilizers. Omega Scientific Publishers, New Delhi, p 176

    Google Scholar 

  • Ghosh AB, Hasan R (1979) Phosphorus fertility status of soils of India. Bulletin 12(ISS):1–8

    CAS  Google Scholar 

  • Ghumare V, Rana M, Gavkare M, Khachi B (2014) Bio-fertilizers- increasing soil fertility and crop productivity. Jr Industrial Pollu Cont 30:196–201

    Google Scholar 

  • Goldstein AH (1994) Involvement of the quinoprotein glucose dehydrogenase in the solubilization of exogenous mineral phosphates by gram negative bacteria. In: Torriani-Gorni A, Yagil E, Silver S (eds) Phosphate in microorganisms: cellular and molecular biology. ASM, Washington, DC, pp 197–203

    Google Scholar 

  • Goteti PK, Emmanuel LDA, Desai S, Shaik MHA (2013) Prospective zinc solubilising bacteria for enhanced nutrient uptake and growth promotion in maize (Zea mays L.) Intern J Microbiol 2013:1–7

    CrossRef  CAS  Google Scholar 

  • Gothwal RK, Nigam VK, Mohan MK, Sasmal D, Ghosh P (2007) Screening of nitrogen fixers from rhizospheric bacterial isolates associated with important desert plants. Appl Ecol Environ Res 6:101–109

    CrossRef  Google Scholar 

  • Gupta AK (2004) The complete technology book on biofertilizers and organic farming. National Institute of Industrial Research Press, New Delhi

    Google Scholar 

  • Gurmani AR, Khan SU, Andaleep RK, Waseem KA (2012) Soil application of zinc improves growth and yield of tomato. Int J Agric Biol 14:91–96

    CAS  Google Scholar 

  • Han HS, Lee KD (2005) Phosphate and potassium solubilizing bacteria effect on mineral uptake, soil availability and growth of eggplant. Res J Agric Biol Sci 1:176–180

    Google Scholar 

  • Han HS, Supanjani LKD (2006) Effect of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber. Plant Soil Environ 52:130–136

    CAS  Google Scholar 

  • Hao X, Cho CM, Racz GJ, Chang C (2002) Chemical retardation of phosphate diffusion in an acid soil as affected by liming. Nutr Cycl Agroecosyst 64:213–224

    CAS  CrossRef  Google Scholar 

  • Hasan R (1996) Phosphorus status of soils in India. Better Crops Intern 10:4–5

    Google Scholar 

  • Hattori T, Inanaga S, Araki H, An P, Mortia S, Luxova M, Lux A (2005) Application of silicon enhanced drought tolerance in Sorghum Bicolor. Physio Plantarum 123:459–466

    CAS  CrossRef  Google Scholar 

  • Hayman DS (1975) Soil Microbilogy. Butterworth, London

    Google Scholar 

  • Hughes MN, Poole RK (1991) Metal speciation and microbial growth the hard and soft facts. J Gen Microbiol 137:725–734

    CAS  CrossRef  Google Scholar 

  • Hussain A, Arshad M, Zahir ZA, Asghar M (2015) Prospects of zinc solubilizing bacteria for enhancing growth of maize. Pak J Agric Sci 52:915–922

    Google Scholar 

  • Jaiswal DK, Verma JP, Prakash S, Meena VS, Meena RS (2016) Potassium as an important plant nutrient in sustainable agriculture: a state of the art. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 21–29. doi:10.1007/978-81-322-2776-2_2

    CrossRef  Google Scholar 

  • Jat LK, Singh YV, Meena SK, Meena SK, Parihar M, Jatav HS, Meena RK, Meena VS (2015) Does integrated nutrient management enhances agricultural productivity? J Pure Appl Microbiol 9(2):1211–1221

    CAS  Google Scholar 

  • Jha Y, Subramanian RB (2016) Regulation of plant physiology and antioxidant enzymes for alleviating salinity stress by potassium-mobilizing bacteria. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 149–162. doi:10.1007/978-81-322-2776-2_11

    CrossRef  Google Scholar 

  • Jnawali AD, Ojha RB, Marahatta S (2015) Role of Azotobacter in soil fertility and sustainability – a review. Adv Plants Agri Res 2:1–5

    Google Scholar 

  • Joseph MH, Dhargave TS, Deshpande CP, Srivastava AK (2015) Microbial solubilisation of phosphate: Pseudomonas versus Trichoderma. Ann Plant Soil Res 17:227–232

    Google Scholar 

  • Katyal JC, Sharma BD (1991) DTPA extratable and total Zn, Cu, Mn and Fe in Indian soils. Geoderma 49:165–179

    CAS  CrossRef  Google Scholar 

  • Khalid A, Arshad M, Shaharoona B, Mahmood T (2009) Plant growth promoting rhizobacteria (PGPR) and sustainable agriculture. In: Khan MS, Zaidi A, Musarat J (eds) Microbial strategies for crop improvement. Springer-Verleg, Berlin/Heidelberg, pp 133–160

    CrossRef  Google Scholar 

  • Kovda VA (1973) The bases of learning about soils, vol 2. Nauka, Moscow

    Google Scholar 

  • Kudashev IS (1956) The effect of phospho- bacterin on the yield and protein content in grains of Autumm wheat, maize, and soybean. Doki Akad Skh Nauk 8:20–23

    Google Scholar 

  • Kumar R (2015a) Influence of mulching, liming and farm yard manures on production potential, economics and quality of maize (Zea mays L.) under rainfed condition of eastern Himalaya. Bangladesh Jf Botany 44(3):391–398

    Google Scholar 

  • Kumar R (2015b) Productivity, profitability and nutrient uptake of maize (Zea mays) as influenced by management practices in North- East India. Indian J Agron 60(2):273–278

    Google Scholar 

  • Kumar R, Kumawat N (2014) Effect of sowing dates, seed rates and integrated nutrition on productivity, profitability and nutrient uptake of summer mungbean in eastern Himalaya. Arch Agron Soil Sci 60(9):1207–1227. http://dx.doi.org/10.1080/03650340.2013.874559

    CAS  CrossRef  Google Scholar 

  • Kumar A, Singh SS, Kumar R, Singh AK, Kumawat N (2010) Response of rhizobium and different levels of molybdenum on growth, nodulation and yield of blackgram (Vigna mungo L.) Environ Ecol 28(3A):1728–1730

    Google Scholar 

  • Kumar S, Kumar R, Hari O (2013a) Shelf-life of Trichoderma viride in talc and charcoal based formulations. Indian J Agric Sci 83(5):566–569

    CAS  Google Scholar 

  • Kumar S, Paswan AK, Kumar R, Kumawat N, Singh AK, Singh RS, Singh RK (2013b) Effect of organic manures, bio-fertilizers and chemical fertilizers on growth, yield and economics of mustard [Brassica juncea (L.) Czern. & Coss.] Bioinfolet 10(3A):834–838

    Google Scholar 

  • Kumar R, Chatterjee D, Kumawat N, Pandey A, Roy A, Kumar M (2014a) Productivity, quality and soil health as influenced by lime in ricebean cultivars in foothills of northeastern India. Crop J 2:338–344. http://dx.doi.org/10.1016/j.cj.2014 .06.001

    CrossRef  Google Scholar 

  • Kumar R, Deka BC, Kumawat N, Ngachan SV (2014b) Effect of integrated nutrition, biofertilizers and zinc application on production potential and profitability of garden pea (Pisum sativum L.) in Eastern Himalaya, India. Legum Res 37(6):614–620. doi:10.5958/0976-0571.2014.00685.7

    CrossRef  Google Scholar 

  • Kumar A, Bahadur I, Maurya BR, Raghuwanshi R, Meena VS, Singh DK, Dixit J (2015a) Does a plant growth-promoting rhizobacteria enhance agricultural sustainability? J Pure Appl Microbiol 9:715–724

    Google Scholar 

  • Kumar R, Deka BC, Ngachan SV (2015b) Response of summer mungbean to sowing time, seed rates and integrated nutrient management. Legum Res 38(3):348–352. doi:10.5958/0976-0571.2015.00119.8

    CrossRef  Google Scholar 

  • Kumar R, Deka BC, Kumar M, Ngachan SV (2015c) Productivity, quality and soil health as influenced by organic, inorganic and biofertilizer on field pea in eastern Himalaya. J Plant Nutr 38(13):2006–2027. doi:10.1080/01904167.2014.988355

    CAS  CrossRef  Google Scholar 

  • Kumar R, Kumar M, Deka BC (2015d) Production potential, profitability and energetics of transplanted rice as influenced by establishment methods and nutrient management practices in Eastern Himalaya. Res Crops 16(4):625–633. doi:10.5958/2348-7542.2015.00088.1

    CrossRef  Google Scholar 

  • Kumar A, Meena R, Meena VS, Bisht JK, Pattanayak A (2016a) Towards the stress management and environmental sustainability. J Clean Prod 137:821–822

    CrossRef  Google Scholar 

  • Kumar A, Patel JS, Bahadur I, Meena VS (2016b) The molecular mechanisms of KSMs for enhancement of crop production under organic farming. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 61–75. doi:10.1007/978-81-322-2776-2_5

    CrossRef  Google Scholar 

  • Kumar A, Maurya BR, Raghuwanshi R, Meena VS, Islam MT (2017) Co-inoculation with Enterobacter and Rhizobacteria on yield and nutrient uptake by wheat (Triticum aestivum L.) in the alluvial soil under indo-gangetic plain of India. J Plant Growth Regul. doi:10.1007/s00344-016-9663-5

  • Kumari A, Singh ON, Kumar R, Singh AK, Singh R (2010) Effect integrated nutrient management on yield and quality of dwarf pea (Pisum sativum L.) Veg Sci 37(2):149–152

    Google Scholar 

  • Kumari A, Singh ON, Kumar R (2012) Effect of integrated nutrient management on growth, seed yield and economics of field pea (Pisum sativum L.) and soil fertility changes. J Food Legumes 25(2):121–124

    Google Scholar 

  • Kumari A, Singh ON, Kumar R (2014) Root growth, crop productivity, nutrient uptake and economics of dwarf pea (Pisum sativum L.) as influenced by integrated nutrient management. Indian J Agric Sci 84(11):1347–1351

    Google Scholar 

  • Kumawat N, Kumar R, Sharma OP (2009a) Nutrient uptake and yield of mungbean [Vigna radiata (L.) Wilczek] as influenced by organic manures, PSB and phosphorus fertilization. Environ Ecol 27(4B):2002–2005

    CAS  Google Scholar 

  • Kumawat N, Sharma OP, Kumar R (2009b) Effect of organic manures, PSB and phosphorus fertilization on yield and economics of mungbean [Vigna radiata (L.) Wilczek]. Environ Ecol 27(1):5–7

    Google Scholar 

  • Kumawat N, Sharma OP, Kumar R, Kumari A (2009c) Response of organic manures, PSB and phosphorus fertilization on growth and yield of mungbean. Environ Ecol 27(4B):2024–2027

    CAS  Google Scholar 

  • Kumawat N, Sharma OP, Kumar R, Kumari A (2010) Yield and yield attributes of mungbean [Vigna radiata (L.) Wilczek] as affected by organic manures, PSB and phosphorus fertilization. Environ Ecol 28(1A):332–335

    Google Scholar 

  • Kumawat N, Singh RP, Kumar R, Kumari A, Kumar P (2012) Response of intercropping and integrated nutrition on production potential and profitability on rainfed pigeon pea. J Agric Sci 4(7):154–162. http://dx.doi.org/10.5539/jas.v4n 7p154

    Google Scholar 

  • Kumawat N, Singh RP, Kumar R, Hari O (2013a) Effect of integrated nutrient management on the performance of sole and intercropped pigeonpea (Cajanus cajan) under rainfed conditions. Indian J Agron 58(3):309–315

    CAS  Google Scholar 

  • Kumawat N, Singh RP, Kumar R (2013b) Productivity, economics and water use efficiency of rainfed pigeonpea+black gram intercropping as influenced by integrated nutrient management. Indian J Soil Conserv 41(2):170–176

    Google Scholar 

  • Kumawat N, Singh RP, Kumar R, Yadav TP, Hari O (2015) Effect integrated nutrient management on productivity, nutrient uptake and economics of rainfed pigeonpea (Cajanus cajan) and blackgram (Vigna mungo) intercropping system. Indian J Agricl Sci 85(2):171–176

    CAS  Google Scholar 

  • Kumawat N, Kumar R, Jagdeesh M, Tomar IS, Meena RS (2017) Integrated nutrition management in pigeon pea intercropping systems for enhancing production and productivity in sustainable manner – a review. J Appl Nat Sci. Accepted

    Google Scholar 

  • Kundu R, Mandal J, Majumder A (2013) Growth and production potential of green gram (Vigna radiata) Influenced by Rhizobium inoculation with different nutrient sources. Int J Agri Environ Biotech 6:344–350

    Google Scholar 

  • Lack AJ, Evans DE (2005) Instant notes in plant biology, vol 7, 1st edn. Bios Scientific Publishers, Oxford, pp 68–71

    Google Scholar 

  • Liang Y, Si J, Romheld V (2005) Silicon uptake and transport is an active process in Cucumis sativus. New Phytol 167:797–804

    CAS  PubMed  CrossRef  Google Scholar 

  • Lin Q, Rao Z, Sun Y, Yao J, Xing L (2002) Identification and practical application of silicate-dissolving bacteria. Agric Sci China 1:81–85

    Google Scholar 

  • Ma JF, Yamaji N (2006) Silicon uptake and accumulation in lower plants. Trends Plant Sci 11:392–397. http://dx.doi.org/10.1016/j.tplants.2006.06.007

    CAS  PubMed  CrossRef  Google Scholar 

  • Maheswari UN, Elakkiya T (2014) Effect of liquid biofertilizers on growth and yield of Vigna mungo L. Int J PharmSci Rev Res 29:42–45

    CAS  Google Scholar 

  • Masood S, Bano A (2016) Mechanism of potassium solubilization in the agricultural soils by the help of soil microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 137–147. doi:10.1007/978-81-322-2776-2-10

    CrossRef  Google Scholar 

  • Matichenkov VV, Calvert DV (2002) Silicon as a beneficial element for sugarcane. J Am Soc Sugarcane Technol 22:21–30

    Google Scholar 

  • Maurya BR, Meena VS, Meena OP (2014) Influence of Inceptisol and Alfisol’s potassium solubilizing bacteria (KSB) isolates on release of K from waste mica. Vegetos 27:181–187

    Google Scholar 

  • Meena OP, Maurya BR, Meena VS (2013a) Influence of K-solubilizing bacteria on release of potassium from waste mica. Agric Sust Dev 1:53–56

    Google Scholar 

  • Meena VS, Maurya BR, Bohra JS, Verma R, Meena MD (2013b) Effect of concentrate manure and nutrient levels on enzymatic activities and microbial population under submerged rice in alluvium soil of Varanasi. Crop Res 45(1,2 & 3):6–12

    Google Scholar 

  • Meena VS, Maurya BR, Verma R, Meena RS, Jatav GK, Meena SK, Meena SK (2013c) Soil microbial population and selected enzyme activities as influenced by concentrate manure and inorganic fertilizer in alluvium soil of Varanasi. The Bioscan 8(3):931–935

    CAS  Google Scholar 

  • Meena VD, Dotaniya ML, Coumar V (2014a) A case for silicon fertilization to improve crop yields in tropical soils. Proc Natl Acad Sci India, Sect B Bio Sci 84:505. doi:10.1007/s40011-013-0270-y

    CAS  CrossRef  Google Scholar 

  • Meena VS, Maurya BR, Bahadur I (2014b) Potassium solubilization by bacterial strain in waste mica. Bang J Bot 43:235–237

    Google Scholar 

  • Meena VS, Maurya BR, Verma JP (2014c) Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiol Res 169:337–347

    CAS  PubMed  CrossRef  Google Scholar 

  • Meena RS, Meena VS, Meena SK, Verma JP (2015a) The needs of healthy soils for a healthy world. J Clean Prod 102:560–561

    CrossRef  Google Scholar 

  • Meena RS, Meena VS, Meena SK, Verma JP (2015b) Towards the plant stress mitigate the agricultural productivity: a book review. J Clean Prod 102:552–553

    CrossRef  Google Scholar 

  • Meena VS, Maurya BR, Meena RS (2015c) Residual impact of wellgrow formulation and NPK on growth and yield of wheat (Triticum aestivum L.). Bangladesh J. Bottomline 44(1):143–146

    Google Scholar 

  • Meena VS, Maurya BR, Verma JP, Aeron A, Kumar A, Kim K, Bajpai VK (2015d) Potassium solubilizing rhizobacteria (KSR): isolation, identification, and K-release dynamics from waste mica. Ecol Eng 81:340–347

    CrossRef  Google Scholar 

  • Meena VS, Meena SK, Verma JP, Meena RS, Ghosh BN (2015e) The needs of nutrient use efficiency for sustainable agriculture. J Clean Prod 102:562–563. doi:10.1016/j.jclepro.2015.04.044

    CrossRef  Google Scholar 

  • Meena VS, Verma JP, Meena SK (2015f) Towards the current scenario of nutrient use efficiency in crop species. J Clean Prod 102:556–557. doi:10.1016/j.jclepro.2015.04.030

    CrossRef  Google Scholar 

  • Meena RK, Singh RK, Singh NP, Meena SK, Meena VS (2016a) Isolation of low temperature surviving plant growth-promoting rhizobacteria (PGPR) from pea (Pisum sativum L.) and documentation of their plant growth promoting traits. Biocatal Agric Biotechnol 4:806–811

    Google Scholar 

  • Meena RS, Bohra JS, Singh SP, Meena VS, Verma JP, Verma SK, Sihag SK (2016b) Towards the prime response of manure to enhance nutrient use efficiency and soil sustainability a current need: a book review. J Clean Prod 112(1):1258–1260

    CrossRef  Google Scholar 

  • Meena SK, Rakshit A, Meena VS (2016c) Effect of seed bio-priming and N doses under varied soil type on nitrogen use efficiency (NUE) of wheat (Triticum Aestivum L.) under greenhouse conditions. Biocatal Agric Biotechnol 6:68–75

    Google Scholar 

  • Meena VS, Bahadur I, Maurya BR, Kumar A, Meena RK, Meena SK, Verma JP (2016d) Potassium-solubilizing microorganism in evergreen agriculture: an overview. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 1–20. doi:10.1007/978-81-322-2776-2_1

    CrossRef  Google Scholar 

  • Meena VS, Meena SK, Bisht JK, Pattanayak A (2016e) Conservation agricultural practices in sustainable food production. J Clean Prod 137:690–691

    CrossRef  Google Scholar 

  • Meena VS, Maurya BR, Meena SK, Meena RK, Kumar A, Verma JP, Singh NP (2017) Can Bacillus species enhance nutrient availability in agricultural soils? In: Islam MT, Rahman M, Pandey P, Jha CK, Aeron A (eds) Bacilli and agrobiotechnology. Springer International Publishing, Cham, pp 367–395. doi:10.1007/978-3-319-44409-3_16

    Google Scholar 

  • Mishra DJ, Singh R, Mishra UK, Kumar SS (2013) Role of biofertilizer in organic agriculture: a review. Res J Recent Sci 2:39–41

    CAS  Google Scholar 

  • Mohammadi K, Sohrabi Y (2012) Bacterial biofertilizers for sustainable crop production: a review. ARPN J Agril Bio Sci 7:307–316

    Google Scholar 

  • Naseri R, Azadi S, Rahimi MJ, Maleki A, Mirzaei A (2013) Effects of inoculation with Azotobacter chroococcum and Pseudomonas putida on yield and some of the important agronomic traits in barley (Hordeum vulgar L). Intern J Agron Plant Prod 4:1602–1610

    Google Scholar 

  • Nath D, Maurya BR, Meena VS (2017) Documentation of five potassium- and phosphorus-solubilizing bacteria for their K and P-solubilization ability from various minerals. Biocatal Agric Biotechnol 10:174–181

    Google Scholar 

  • Ohyama T (2010) Nitrogen as a major essential element of plants. Res Signpost 37/661(2):695–723

    Google Scholar 

  • Ojaghloo F, Farahvash F, Hassanzadeh A, Pouryusef M (2007) Effect of inoculation with Azotobacter and barvar phosphate bio-fertilizers on yield of safflower (Carthamus tinctorius L.). J Agri Sci Islamic Azad University, Tabriz Branch, pp 25–30

    Google Scholar 

  • Oliveira CA, Sa NMH, Gomes EA, Marriel IE, Scotti MR, Guimaraes CT, Schaffert RE, Alves VMC (2009) Assessment of the mycorrhizal community in the rhizosphere of maize (Zea mays L.) genotypes contrasting for phosphorus efficiency in the acid savannas of Brazil using denaturing gradient gel electrophoresis (DGGE). Appl Soil Ecol 41:249–258

    CrossRef  Google Scholar 

  • Omar SA (1998) The role of rock phosphate solubilizing fungi and vesicular-arbuscular mycorrhizae (VAM) in the growth of wheat plant fertilized with rock phosphate. World J Microbiol Biotechnol 14:211–218

    CAS  CrossRef  Google Scholar 

  • Parewa HP, Yadav J, Rakshit A, Meena VS, Karthikeyan N (2014) Plant growth promoting rhizobacteria enhance growth and nutrient uptake of crops. Agric Sustain Dev 2(2):101–116

    Google Scholar 

  • Patra P, Pati BK, Ghosh GK, Mura SS, Saha A (2013) Effect of Biofertilizers and Sulphur on growth, yield, and oil content of hybrid sunflower (Helianthus annuus L) In A typical lateritic soil. 2: 603. doi:10.4172/scientificreports.603

  • Paula MA, Reis VM, Dobereiner J (1991) Interaction of Glomus clarum with Acetobacter diazotrophicus in infection of sweet potato (Ipomoea batatas), sugarcane (Saccharum sp.) and sweet sorghum (Sorghum vulgare). Biol Fertil Soils 11:111–115

    CrossRef  Google Scholar 

  • Peck AW, McDonald GK (2010) Adequate zinc nutrition alleviates the adverse effects of heat stress in bread wheat. Plant Soil 337:355–374

    CAS  CrossRef  Google Scholar 

  • Pradhan N, Sukla LB (2005) Solubilization of inorganic phosphates by fungi isolated from agriculture soil. African J Biotechn 5:850–854

    Google Scholar 

  • Prajapati K (2016) Impact of potassium solubilizing bacteria on growth and yield of mungebean Vigna radiata. Indian J Appl Res 6(2):390–392

    Google Scholar 

  • Prakash S, Verma JP (2016) Global perspective of potash for fertilizer production. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 327–331. doi:10.1007/978-81-322-2776-2_23

    CrossRef  Google Scholar 

  • Prasad R (2007) Strategies for increasing fertilizer use efficiency. Indian J Ferti 3:53–62

    CAS  Google Scholar 

  • Prasad R (2010) Zinc biofortification of food grains in relation to food security and alleviation of zinc malnutrition. Curr Sci 98:1300–1304

    CAS  Google Scholar 

  • Prasad R, Kumar D, Rana DS, Shivay YS, Tewatia RK (2014) Text book of plant nutrient management. Indian Society of Agronomy, New Delhi, p 72

    Google Scholar 

  • Priyadharsini P, Muthukumar T (2016) Interactions between arbuscular mycorrhizal fungi and potassium-solubilizing microorganisms on agricultural productivity. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 111–125. doi:10.1007/978-81-322-2776-2_8

    CrossRef  Google Scholar 

  • Raghavendra MP, Nayaka NC, Nuthan BR (2016) Role of rhizosphere microflora in potassium solubilization. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 43–59. doi:10.1007/978-81-322-2776-24

    CrossRef  Google Scholar 

  • Rawat J, Sanwal P, Saxena J (2016) Potassium and its role in sustainable agriculture. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 235–253. doi:10.1007/978-81-322-2776-2_17

    CrossRef  Google Scholar 

  • Reinhold B, Hurek T, Niemann EG, Fendrik I (1986) Close association of Azospirillum and Diazotrophic rods with different root zones of Kallar grass. Appl Environ Microbiol 52:520

    CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson AE (1994) Soil microorganisms and phosphorus availability. In: Pankhurst CE, Doube BM, Grupta VVSR, Grace PR (eds) Soil Biota, Management in Sustainable Farming Systems. CSIRO, Melbourne, pp 50–62

    Google Scholar 

  • Rinku SPS, Kumawat N, Rathore PS, Yadav PK, Om H (2014) Effect of nitrogen levels and biofertilizers on growth and yield of pearl millet (Pennisetum glaucum L.) under north western Rajasthan. Ann Agric Res New Ser 35:311–314

    Google Scholar 

  • Robert TL (2009) The role of fertilizer in growing the world’s food. Better Crops 93:12–15

    Google Scholar 

  • Rodrignes FA, Datnoff LE (2005) Silicon and rice disease management. Fitopat Brasileira 30:457–469. http://dx.doi.org/10.1590/S0100-41582005000500001

    CrossRef  Google Scholar 

  • Rosas SB, Avanzini G, Carlier E, Pasluosta C, Pastor N, Rovera M (2009) Root colonization and growth promotion of wheat and maize by Pseudomonas aurantiaca SR1. Soil Biol Biochem 41:1802–1806

    CAS  CrossRef  Google Scholar 

  • Ruvkun GB, Ausubel FM (1980) Interspecies homology of nitrogenase genes. ProcNatl Acad Sci U S A 77:191–195

    CAS  CrossRef  Google Scholar 

  • Saha M, Maurya BR, Bahadur I, Kumar A, Meena VS (2016a) Can potassium-solubilising bacteria mitigate the potassium problems in India? In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 127–136. doi:10.1007/978-81-322-2776-2_9

    CrossRef  Google Scholar 

  • Saha M, Maurya BR, Meena VS, Bahadur I, Kumar A (2016b) Identification and characterization of potassium solubilizing bacteria (KSB) from Indo-Gangetic Plains of India. Biocatal Agric Biotechnol 7:202–209

    Google Scholar 

  • Saikia SP, Jain V (2007) Biological nitrogen fixation with non-legumes: an achievable target or a dogma? Curr Sci 92:317–322

    CAS  Google Scholar 

  • Saravanan SV, Sudalayandy RS, Savariappan AJ (2003) Assessing in vitro solubilization potential of different zinc solubilizing bacterial (ZSB) isolates. Braz J Microbiol 34:121–125

    CrossRef  Google Scholar 

  • Saravanan VS, Subramoniam SR, Raj SA (2004) Assessing in vitro solubilization potential of different zinc solubilizing bacterial (ZSB) isolates. Brazilian J Microb 35:121–125

    CAS  CrossRef  Google Scholar 

  • Saravanan VS, Madhaiyan M, Thangaraju M (2007) Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus. Chemosphere 66:1794–1798

    CAS  PubMed  CrossRef  Google Scholar 

  • Saravanan VS, Kumar MA, Sa TM (2011) Microbial zinc solubilization and their role on plants. In: Maheshwari DK (ed) Bacteria in agrobiology: plant nutrient management. Springer, Berlin, pp 47–63

    CrossRef  Google Scholar 

  • Sarkar D, Meena VS, Haldar A, Rakshit R (2017) Site-specific nutrient management (SSNM): a unique approach towards maintaining soil health. In: The adaptive soil management: from theory to practices, Singapore, Springer, pp 69–88. doi:10.1007/978-981-10-3638-5_3

  • Saxena AK, Tilak KVBR (1998) Free-living nitrogen fixers: its role in crop production. In: Verma AK (ed) Microbes for health, wealth and sustainable environment. Malhotra Publ. Co, New Delhi, pp 25–64

    Google Scholar 

  • Sayer JA, Gadd GM (1997) Solubilization and transformation of insoluble inorganic metal compounds to insoluble metal oxalates by Aspergillus niger. Mycol Res 101:653–661

    CAS  CrossRef  Google Scholar 

  • Sbartai H, Djebar M, Rouabhi R, Sbartai I, Berrebbah H (2011) Antioxidative response in tomato plants Lycopersicon esculentum L. roots and leaves to zinc. Am Eurasian J Toxicol Sci 3:41–46

    Google Scholar 

  • Seoud A, Abdel-Megeed A (2012) Impact of rock materials and biofertilizations on P and K availability for maize (Zea maize) under calcareous soil conditions. Saudi Bio Sci 19:55–63

    CrossRef  CAS  Google Scholar 

  • Seshadre S, Muthukumarasamy R, Lakshminarasimhan C, Ignaacimuthu S (2002) Solubilization of inorganic phosphates by Azospirillum halopraeferans. Curr Sci 79:565–567

    Google Scholar 

  • Sharma SB, Sayyed RZ, Trivedi MH, Thivakaran GA (2013) Phosphate solubilizing microbes: a sustainable approach for managing phosphorus deficiency in agricultural soils. Springer Plus 2:587

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Sharma A, Shankhdhar D, Shankhdhar SC (2016) Potassium-solubilizing microorganisms: mechanism and their role in potassium solubilization and uptake. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 203–219. doi:10.1007/978-81-322-2776-2_15

    CrossRef  Google Scholar 

  • Shekhar NC, Bhaclauriay S, Kumar P, Lal H, Mondal R, Verma D (2000) Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microbiol Lett 182:291–296

    CrossRef  Google Scholar 

  • Sheng X (2005) Growth promotion and increased potassium uptake of cotton and rape by a potassium releasing strain of Bacillus edaphicus. Soil Biol Biochem 37:1918–1922

    CAS  CrossRef  Google Scholar 

  • Shivran RK, Rokadia P, Kumar R (2012) Phosphorus and sulphur nutrition with P-solublizing bacterial inoculation enhanced the quality and yield of soybean (Cultivar JS-335). Madras Agric J 99(1–3):68–72

    Google Scholar 

  • Shivran RK, Kumar R, Kumari A (2013) Influence of sulphur, phosphorus and farm yard manure on yield attributes and productivity of maize (Zea mays L.) in humid south eastern plains of Rajasthan. Agric Sci Dig 33(1):9–14

    CAS  Google Scholar 

  • Shrivastava M, Srivastava PC, D’Souza SF (2016) KSM soil diversity and mineral solubilization, in relation to crop production and molecular mechanism. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 221–234. doi:10.1007/978-81-322-2776-216

    CrossRef  Google Scholar 

  • Simine CDD, Sayer JA, Gadd GM (1998) Solubilization of zinc phosphate by a strain of Pseudomonas fluorescens isolated from a forest soil. Biol Fertil Soils 28:87–94

    CrossRef  Google Scholar 

  • Sindhu SS, Parmar P, Phour M, Sehrawat A (2016) Potassium-solubilizing microorganisms (KSMs) and its effect on plant growth improvement. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 171–185. doi:10.1007/978-81-322-2776-2_13

    CrossRef  Google Scholar 

  • Singh MV (2009) Micronutrient nutritional problems in soils in India and improvement for human and animal health. Indian J Fertil 5:11–26

    CAS  Google Scholar 

  • Singh MV (2011) Assessing extent of zinc deficiency for soil factors affecting and nutritional scarcity in humans and animals. Indian J Fertil 7:36–43

    CAS  Google Scholar 

  • Singh NP, Singh RK, Meena VS, Meena RK (2015) Can we use maize (Zea mays) rhizobacteria as plant growth promoter? Vegetos 28(1):86–99. doi:10.5958/2229–4473.2015.00012.9

    Google Scholar 

  • Singh M, Dotaniya ML, Mishra A, Dotaniya CK, Regar KL, Lata M (2016) Role of biofertilizers in conservation agriculture. In: Bisht JK, Meena VS, Mishra PK, Pattanayak A (eds) Conservation agriculture: an approach to combat climate change in Indian Himalaya. Springer, Singapore, pp 113–134. doi:10.1007/978-981-10-2558-7-4

    CrossRef  Google Scholar 

  • Sommer M, Kaczorek D, Kuzyakov Y, Breuer J (2006) Silicon pools and fluxes in soils and landscapes-a review. J Plant Nutr Soil Sci 169:310–329

    CAS  CrossRef  Google Scholar 

  • Sparks DL, Huang PM (1987) Physical chemistry of soil potassium. In: Potassium in agriculture. Munson RD ed. Americ Soc Agro J USA, pp 201–276

    Google Scholar 

  • Srivastava PC, Gupta UC (1996) Trace elements in crop production. Oxford and IBH Publishers, New Delhi, p 356

    Google Scholar 

  • Stevenson FJ, Cole MA (1999) Cycle of soil: carbon, nitrogen, phosphorus, sulphur, micronutrients. Wiley, New York

    Google Scholar 

  • Subramanian KV, Tenshia K, Jayalakshmi RV (2009) Role of arbuscular mycorrhizal fungus (Glomus intraradices)–(fungus aided) in zinc nutrition of maize. J Agric Biotechnol Sust Dev 1:29–38

    CAS  Google Scholar 

  • Sundara B, Natarajan V, Hari K (2002) Influence of phosphorus solubilizing bacteria on the change in soil available phosphorus and sugarcane and sugar yields. Field Crop Res 77:43–49

    CrossRef  Google Scholar 

  • Tariq M, Hameed S, Malik KA, Hafeez FY (2007) Plant root associated bacteria for zinc mobilization in rice. Pak J Bot 39:245–253

    Google Scholar 

  • Tavallali V, Rahemi M, Eshghi S, Kholdebarin B, Ramezanian A (2010) Zinc alleviates salt stress and increases antioxidant enzyme activity in the leaves of pistachio (Pistacia vera L. 'Badami') seedlings. Turk J Agr Forest 34:349–359

    CAS  Google Scholar 

  • Teotia P, Kumar V, Kumar M, Shrivastava N, Varma A (2016) Rhizosphere microbes: potassium solubilization and crop productivity-present and future aspects. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 315–325. doi:10.1007/978-81-322-2776-2_22

    CrossRef  Google Scholar 

  • Tilak KVBR, Ranganayaki N, Pal KK, Saxena AK, Shekhar Nautiyal C, Mittal S, Tripathi AK, Johri BN (2005) Diversity of plant growth and soil health supporting bacteria. Curr Sci 89:136–150

    CAS  Google Scholar 

  • Tillman D, Blazer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci U S A 108:20260–20264

    CrossRef  Google Scholar 

  • Tisdale SL, Nelson WL, Beaten JD (1984) Zinc in soil fertility and fertilizers, 4th edn. Macmillan Publishing Company, New York, pp 382–391

    Google Scholar 

  • Tisdale SL, Nelson WL, Beaton JD, Havlin JL (2009) Soil fertility and fertilizer-an introduction to nutrient management, 7th edn. Prentice Hall of India, New Delhi

    Google Scholar 

  • Trivedi P, Pandey A, Palni LMS (2012) Bacterial inoculants for field applications under mountain ecosystem: present initiatives and future prospects. In: Maheshwari DK (ed) Bacteria in agrobiology: plant probiotics. Springer, Berlin/Heidelberg, pp 15–44

    CrossRef  Google Scholar 

  • Umesha S, Srikantaiah M, Prasanna KS, Sreeramulu KR, Divya M, Lakshmipathi RN (2014) Comparative Effect of organics and biofertilizers on growth and yield of maize (Zea mays L). Curr Agri Res J 2:55–62

    CrossRef  Google Scholar 

  • Van Wazer JR (1958) Phosphorus and its compounds. Interscience, New York

    Google Scholar 

  • Vasanthi N, Saleena LM, Raj SA (2012) Silicon in day today life. World Appl Sci J 17:1425–1440

    CAS  Google Scholar 

  • Vassileva M, Azcon R, Barea JM, Vasslev N (2000) Rock phosphate solubilization by free and encapsulated cells of Yarowia lipolytica. Process Biochem 35:693–697

    CAS  CrossRef  Google Scholar 

  • Velazquez E, Silva LR, Ramírez-Bahena MH, Peix A (2016) Diversity of potassium-solubilizing microorganisms and their interactions with plants. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 99–110. doi:10.1007/978-81-322-2776-2_7

    CrossRef  Google Scholar 

  • Verma R, Maurya BR, Meena VS (2014) Integrated effect of bio-organics with chemical fertilizer on growth, yield and quality of cabbage (Brassica oleracea var capitata). Indian J Agricl Sci 84(8):914–919

    CAS  Google Scholar 

  • Verma JP, Jaiswa DK, Meena VS, Meena RS (2015a) Current need of organic farming for enhancing sustainable agriculture. J Clean Prod 102:545–547

    CrossRef  Google Scholar 

  • Verma JP, Jaiswal DK, Meena VS, Kumar A, Meena RS (2015b) Issues and challenges about sustainable agriculture production for management of natural resources to sustain soil fertility and health. J Clean Prod 107:793–794

    CrossRef  Google Scholar 

  • Verma R, Maurya BR, Meena VS, Dotaniya ML, Deewan P (2017a) Microbial dynamics as influenced by bio-organics and mineral fertilizer in alluvium soil of Varanasi. India Int J Curr Microbiol App Sci 6(2):1516–1524

    CrossRef  Google Scholar 

  • Verma R, Maurya BR, Meena VS, Dotaniya ML, Deewan P, Jajoria M (2017b) Enhancing production potential of cabbage and improves soil fertility status of indo-Gangetic plain through application of bio-organics and mineral fertilizer. Int J Curr Microbiol App Sci 6(3):301–309

    Google Scholar 

  • Wagner SC (2011) Biological Nitrogen Fixation. Nat Edu Know 3(10):15

    Google Scholar 

  • Wani SP (1990) Inoculation with associative nitrogen fixing bacteria: role in cereal grain production improvement. Indian J Microbiol 30:363–393

    Google Scholar 

  • Whiting SN, De Souza M, Terry N (2001) Rhizosphere bacteria mobilize Zn for hyper accumulate or by Thlaspi caerulescens. Environ Sci Technol 35:3144–3150

    CAS  PubMed  CrossRef  Google Scholar 

  • Williamson LC, Ribrioux SPCP, Fitter AH, Leyser HMO (2001) Phosphate availability regulates root system architecture in arabidopsis. Plant Physiol 126:875–882

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Wu H (2005) Identification and characterization of a novel biotin synthesis gene in Saccharomyces cerevisiae. Appl Environ Microbial 71:6845–6855

    CAS  CrossRef  Google Scholar 

  • Yadav BK, Sidhu AS (2016) Dynamics of potassium and their bioavailability for plant nutrition. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 187–201. doi:10.1007/978-81-322-2776-2-14

    CrossRef  Google Scholar 

  • Yamada Y, Hoshino K, Ishikawa T (1997) The phylogeny of acetic acid bacteria based on the partial sequences of 16S ribosomal RNA: the elevation of the subgenus Gluconoacetobacter to generic level. Biosci Biotechnol Biochem 61:1244–1251

    CAS  PubMed  CrossRef  Google Scholar 

  • Yasin M, Munir I, Faisal M (2016) Can Bacillus spp. enhance K+ uptake in crop species. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 163–170. doi:10.1007/978-81-322-2776-2-12

    CrossRef  Google Scholar 

  • Zahedi H (2016) Growth-promoting effect of potassium-solubilizing microorganisms on some crop species. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 31–42. doi:10.1007/978-81-322-2776-2-3

    CrossRef  Google Scholar 

  • Zakaria A (2009) Growth optimization of potassium solubilizing bacteria isolated from biofertilizer. Natural Resou Eng Univ, pp 40

    Google Scholar 

  • Zhang C, Kong F (2014) Isolation and identification of potassium-solubilizing bacteria from tobacco rhizospheric soil and their effect on tobacco plants. Appl Soil Ecol 82:18–25

    CrossRef  Google Scholar 

  • Zhao BG (2008) Bacteria carried by the pine wood nematode and their symbiotic relationship with nematode. In: Zhao BG, Futai K, Sutherland JR, Takeuchi Y (eds) Pine wilt disease. Springer, Tokyo, pp 264–274

    CrossRef  Google Scholar 

  • Zhou H, Zong X, Liu F, Qiu G, Hu Y (2006) Screening, identification and desilication of a silicate bacterium. J Cent S Univ Technol 3:337–341

    CrossRef  Google Scholar 

Download references

Acknowledgment

The authors would like to thank all anonymous reviewers for providing substantial critical comments which helped to improve the quality of our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Kumawat, N., Kumar, R., Kumar, S., Meena, V.S. (2017). Nutrient Solubilizing Microbes (NSMs): Its Role in Sustainable Crop Production. In: Meena, V., Mishra, P., Bisht, J., Pattanayak, A. (eds) Agriculturally Important Microbes for Sustainable Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-10-5343-6_2

Download citation