Skip to main content

Abstract

As the prevalence of obesity continues to rise significantly worldwide, an increasing number of overweight patients are expected to present to hospital with various pathological conditions. In particular, obese patients are at risk for acquiring infections. When facing life-threatening infections in critically ill patients, careful antibiotic dose adjustment based on pharmacokinetic/pharmacodynamic (PK/PD) considerations is necessary because hospital-related infections are often caused by pathogens with decreased susceptibility (as compared to community isolates) and drug handling is altered in this patient population. Antibiotic PK may be even further altered in obese critically ill patients. In this chapter, we will explore why obese patients may be more susceptible to infections than lean individuals, what the possible PK changes are due to obesity per se, and how to use PK principles to optimize antibiotic dosing strategies in this patient population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. WHO (2016) Obesity. http://www.who.int/topics/obesity/en/

  2. Kelly T et al (2008) Global burden of obesity in 2005 and projections to 2030. Int J Obes (Lond) 32(9):1431–1437

    Article  CAS  Google Scholar 

  3. Buchwald H, Williams SE (2004) Bariatric surgery worldwide 2003. Obes Surg 14(9):1157–1164

    Article  PubMed  Google Scholar 

  4. Angrisani L et al (2015) Bariatric surgery worldwide 2013. Obes Surg 25(10):1822–1832

    Article  CAS  PubMed  Google Scholar 

  5. Leyland KM et al (2016) Obesity and the relative risk of knee replacement surgery in patients with knee osteoarthritis: a prospective cohort study. Arthritis Rheumatol 68(4):817–825

    Article  PubMed  Google Scholar 

  6. Falagas ME, Kompoti M (2006) Obesity and infection. Lancet Infect Dis 6(7):438–446

    Article  PubMed  Google Scholar 

  7. Falagas ME et al (2009) Effect of body mass index on the outcome of infections: a systematic review. Obes Rev 10(3):280–289

    Article  CAS  PubMed  Google Scholar 

  8. Choban PS et al (1995) Increased incidence of nosocomial infections in obese surgical patients. Am Surg 61(11):1001–1005

    CAS  PubMed  Google Scholar 

  9. Bertakis KD, Azari R (2005) Obesity and the use of health care services. Obes Res 13(2):372–379

    Article  PubMed  Google Scholar 

  10. Serrano PE, Khuder SA, Fath JJ (2010) Obesity as a risk factor for nosocomial infections in trauma patients. J Am Coll Surg 211(1):61–67

    Article  PubMed  Google Scholar 

  11. Dodds Ashley ES et al (2004) Risk factors for postoperative mediastinitis due to methicillin-resistant Staphylococcus aureus. Clin Infect Dis 38(11):1555–1560

    Article  CAS  PubMed  Google Scholar 

  12. Pai MP (2015) Treatment of bacterial infections in obese adult patients: how to appropriately manage antimicrobial dosage. Curr Opin Pharmacol 24:12–17

    Article  CAS  PubMed  Google Scholar 

  13. Thelwall S et al (2015) Impact of obesity on the risk of wound infection following surgery: results from a nationwide prospective multicentre cohort study in England. Clin Microbiol Infect 21(11):1008.e1–1008.e8

    Article  CAS  Google Scholar 

  14. Koenig SM (2001) Pulmonary complications of obesity. Am J Med Sci 321(4):249–279

    Article  CAS  PubMed  Google Scholar 

  15. Beal M et al (2004) A pilot study of quantitative aspiration in patients with symptoms of obstructive sleep apnea: comparison to a historic control group. Laryngoscope 114(6):965–968

    Article  PubMed  Google Scholar 

  16. Vaughan RW, Conahan TJ III (1980) Part I: cardiopulmonary consequences of morbid obesity. Life Sci 26(25):2119–2127

    Article  CAS  PubMed  Google Scholar 

  17. Marik P, Varon J (1998) The obese patient in the ICU. Chest 113(2):492–498

    Article  CAS  PubMed  Google Scholar 

  18. Chan MK, Chong LY, Achilles K, Project Working Group in Hong Kong (2002) A prospective epidemiologic survey on the prevalence of foot disease in Hong Kong. J Am Podiatr Med Assoc 92(8):450–456

    Article  PubMed  Google Scholar 

  19. Roujeau JC et al (2004) Chronic dermatomycoses of the foot as risk factors for acute bacterial cellulitis of the leg: a case-control study. Dermatology 209(4):301–307

    Article  PubMed  Google Scholar 

  20. Canturk Z et al (2003) Nosocomial infections and obesity in surgical patients. Obes Res 11(6):769–775

    Article  PubMed  Google Scholar 

  21. Fleischmann E et al (2005) Nitrous oxide and risk of surgical wound infection: a randomised trial. Lancet 366(9491):1101–1107

    Article  CAS  PubMed  Google Scholar 

  22. Polgreen PM, Herwaldt LA (2004) Staphylococcus aureus colonization and nosocomial infections: implications for prevention. Curr Infect Dis Rep 6(6):435–441

    Article  PubMed  Google Scholar 

  23. Brill MJ et al (2014) Reduced subcutaneous tissue distribution of cefazolin in morbidly obese versus non-obese patients determined using clinical microdialysis. J Antimicrob Chemother 69(3):715–723

    Article  CAS  PubMed  Google Scholar 

  24. Hites M, Deprez G, Wolff F, Ickx B, Verleije A, Closset J, Loi P, Prevost J, Taccone FS, Racapé J, Cotton F, Jacobs F (2016) Evaluation of total body weight and body mass index cut-offs for increased cefazolin dose for surgical prophylaxis. Int J Antimicrob Agents 48(6):633–640

    Article  CAS  PubMed  Google Scholar 

  25. Weber DJ et al (1985) Obesity as a predictor of poor antibody response to hepatitis B plasma vaccine. JAMA 254(22):3187–3189

    Article  CAS  PubMed  Google Scholar 

  26. Weber DJ et al (1986) Response to deltoid muscle injection of hepatitis B vaccine after failure to respond to gluteal injections. JAMA 255(16):2157

    Article  CAS  PubMed  Google Scholar 

  27. Sheridan PA et al (2012) Obesity is associated with impaired immune response to influenza vaccination in humans. Int J Obes (Lond) 36(8):1072–1077

    Article  CAS  Google Scholar 

  28. Piet B et al (2011) CD8(+) T cells with an intraepithelial phenotype upregulate cytotoxic function upon influenza infection in human lung. J Clin Invest 121(6):2254–2263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Goossens GH (2008) The role of adipose tissue dysfunction in the pathogenesis of obesity-related insulin resistance. Physiol Behav 94(2):206–218

    Article  CAS  PubMed  Google Scholar 

  30. Ouchi N et al (1999) Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin. Circulation 100(25):2473–2476

    Article  CAS  PubMed  Google Scholar 

  31. Considine RV et al (1996) Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med 334(5):292–295

    Article  CAS  PubMed  Google Scholar 

  32. Faggioni R, Feingold KR, Grunfeld C (2001) Leptin regulation of the immune response and the immunodeficiency of malnutrition. FASEB J 15(14):2565–2571

    Article  CAS  PubMed  Google Scholar 

  33. Karlsson EA, Sheridan PA, Beck MA (2010) Diet-induced obesity in mice reduces the maintenance of influenza-specific CD8+ memory T cells. J Nutr 140(9):1691–1697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Donath MY, Shoelson SE (2011) Type 2 diabetes as an inflammatory disease. Nat Rev Immunol 11(2):98–107

    Article  CAS  PubMed  Google Scholar 

  35. Marti A, Marcos A, Martinez JA (2001) Obesity and immune function relationships. Obes Rev 2(2):131–140

    Article  CAS  PubMed  Google Scholar 

  36. Mancuso P (2013) Obesity and respiratory infections: does excess adiposity weigh down host defense? Pulm Pharmacol Ther 26(4):412–419

    Article  CAS  PubMed  Google Scholar 

  37. Bratzler DW et al (2013) Clinical practice guidelines for antimicrobial prophylaxis in surgery. Surg Infect (Larchmt) 14(1):73–156

    Article  Google Scholar 

  38. Bitterman R et al (2016) Systematic review of antibiotic consumption in acute care hospitals. Clin Microbiol Infect 22(6):561.e7–561.e19

    Article  CAS  Google Scholar 

  39. Vincent JL et al (2009) International study of the prevalence and outcomes of infection in intensive care units. JAMA 302(21):2323–2329

    Article  CAS  PubMed  Google Scholar 

  40. Cockshott WP et al (1982) Intramuscular or intralipomatous injections? N Engl J Med 307(6):356–358

    Article  CAS  PubMed  Google Scholar 

  41. Jackson SJ et al (2004) Delayed gastric emptying in the obese: an assessment using the non-invasive (13)C-octanoic acid breath test. Diabetes Obes Metab 6(4):264–270

    Article  CAS  PubMed  Google Scholar 

  42. Maddox A et al (1989) Gastric and oesophageal emptying in obesity. Scand J Gastroenterol 24(5):593–598

    Article  CAS  PubMed  Google Scholar 

  43. Gundersen K, Shen G (1966) Total body water in obesity. Am J Clin Nutr 19(2):77–83

    CAS  PubMed  Google Scholar 

  44. Forbes GB, Welle SL (1983) Lean body mass in obesity. Int J Obes 7(2):99–107

    CAS  PubMed  Google Scholar 

  45. Abernethy DR et al (1982) Prolongation of drug half-life due to obesity: studies of desmethyldiazepam (clorazepate). J Pharm Sci 71(8):942–944

    Article  CAS  PubMed  Google Scholar 

  46. Abernethy DR et al (1983) Prolonged accumulation of diazepam in obesity. J Clin Pharmacol 23(8–9):369–376

    Article  CAS  PubMed  Google Scholar 

  47. Abernethy DR, Greenblatt DJ, Smith TW (1981) Digoxin disposition in obesity: clinical pharmacokinetic investigation. Am Heart J 102(4):740–744

    Article  CAS  PubMed  Google Scholar 

  48. Blouin RA et al (1982) Vancomycin pharmacokinetics in normal and morbidly obese subjects. Antimicrob Agents Chemother 21(4):575–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Benedek IH, Blouin RA, McNamara PJ (1984) Serum protein binding and the role of increased alpha 1-acid glycoprotein in moderately obese male subjects. Br J Clin Pharmacol 18(6):941–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Routledge PA et al (1981) Relationship between alpha 1-acid glycoprotein and lidocaine disposition in myocardial infarction. Clin Pharmacol Ther 30(2):154–157

    Article  CAS  PubMed  Google Scholar 

  51. Jackson PR, Tucker GT, Woods HF (1982) Altered plasma drug binding in cancer: role of alpha 1-acid glycoprotein and albumin. Clin Pharmacol Ther 32(3):295–302

    Article  CAS  PubMed  Google Scholar 

  52. Piafsky KM et al (1978) Increased plasma protein binding of propranolol and chlorpromazine mediated by disease-induced elevations of plasma alpha1 acid glycoprotein. N Engl J Med 299(26):1435–1439

    Article  CAS  PubMed  Google Scholar 

  53. Chapman JM, Massey FJ Jr (1964) The interrelationship of serum cholesterol, hypertension, body weight, and risk of coronary disease. Results of the first ten years’ follow-up in the Los Angeles Heart Study. J Chronic Dis 17:933–949

    Article  CAS  PubMed  Google Scholar 

  54. Rifkind BM, Gale M, Jackson ID (1967) Serum lipid levels and body fat distribution in obese females. J Clin Pathol 20(3):249–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nestel PJ, Ishikawa T, Goldrick RB (1978) Diminished plasma free fatty acid clearance in obese subjects. Metabolism 27(5):589–597

    Article  CAS  PubMed  Google Scholar 

  56. Morita K, Yamaji A (1995) Changes in the serum protein binding of vancomycin in patients with methicillin-resistant Staphylococcus aureus infection: the role of serum alpha 1-acid glycoprotein levels. Ther Drug Monit 17(2):107–112

    Article  CAS  PubMed  Google Scholar 

  57. Suh B et al (1981) Effect of free fatty acids on protein binding of antimicrobial agents. J Infect Dis 143(4):609–616

    Article  CAS  PubMed  Google Scholar 

  58. Summers LK et al (1996) Subcutaneous abdominal adipose tissue blood flow: variation within and between subjects and relationship to obesity. Clin Sci (Lond) 91(6):679–683

    Article  CAS  Google Scholar 

  59. Rossi M et al (2012) Subcutaneous adipose tissue blood flow and vasomotion in morbidly obese patients: long term effect of gastric bypass surgery. Clin Hemorheol Microcirc 51(3):159–167

    PubMed  Google Scholar 

  60. Hollenstein UM et al (2001) Soft tissue concentrations of ciprofloxacin in obese and lean subjects following weight-adjusted dosing. Int J Obes Relat Metab Disord 25(3):354–358

    Article  CAS  PubMed  Google Scholar 

  61. Joukhadar C et al (2005) Increase of microcirculatory blood flow enhances penetration of ciprofloxacin into soft tissue. Antimicrob Agents Chemother 49(10):4149–4153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Katsiki N, Mikhailidis DP, Mantzoros CS (2016) Non-alcoholic fatty liver disease and dyslipidemia: an update. Metabolism 65(8):1109–1123

    Article  CAS  PubMed  Google Scholar 

  63. Nascimbeni F et al (2013) From NAFLD in clinical practice to answers from guidelines. J Hepatol 59(4):859–871

    Article  PubMed  Google Scholar 

  64. Rinella ME (2015) Nonalcoholic fatty liver disease: a systematic review. JAMA 313(22):2263–2273

    Article  CAS  PubMed  Google Scholar 

  65. Abernethy DR, Greenblatt DJ (1984) Lidocaine disposition in obesity. Am J Cardiol 53(8):1183–1186

    Article  CAS  PubMed  Google Scholar 

  66. Brill MJ et al (2012) Impact of obesity on drug metabolism and elimination in adults and children. Clin Pharmacokinet 51(5):277–304

    Article  CAS  PubMed  Google Scholar 

  67. Kotlyar M, Carson SW (1999) Effects of obesity on the cytochrome P450 enzyme system. Int J Clin Pharmacol Ther 37(1):8–19

    CAS  PubMed  Google Scholar 

  68. Abernethy DR et al (1983) Enhanced glucuronide conjugation of drugs in obesity: studies of lorazepam, oxazepam, and acetaminophen. J Lab Clin Med 101(6):873–880

    CAS  PubMed  Google Scholar 

  69. Abernethy DR et al (1984) The influence of obesity on the pharmacokinetics of oral alprazolam and triazolam. Clin Pharmacokinet 9(2):177–183

    Article  CAS  PubMed  Google Scholar 

  70. Abernethy DR et al (1982) Obesity, sex, and acetaminophen disposition. Clin Pharmacol Ther 31(6):783–790

    Article  CAS  PubMed  Google Scholar 

  71. Christoff PB et al (1983) Procainamide disposition in obesity. Drug Intell Clin Pharm 17(7–8):516–522

    Article  CAS  PubMed  Google Scholar 

  72. Naeye RL, Roode P (1970) The sizes and numbers of cells in visceral organs in human obesity. Am J Clin Pathol 54(2):251–253

    Article  CAS  PubMed  Google Scholar 

  73. McIntosh JF, Moller E, Van Slyke DD (1928) Studies of urea excretion. III: the influence of body size on urea output. J Clin Invest 6(3):467–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Henegar JR et al (2001) Functional and structural changes in the kidney in the early stages of obesity. J Am Soc Nephrol 12(6):1211–1217

    CAS  PubMed  Google Scholar 

  75. Schmitz PG et al (1992) Renal injury in obese Zucker rats: glomerular hemodynamic alterations and effects of enalapril. Am J Physiol 263(3 Pt 2):F496–F502

    CAS  PubMed  Google Scholar 

  76. Pecly IM, Genelhu V, Francischetti EA (2006) Renal functional reserve in obesity hypertension. Int J Clin Pract 60(10):1198–1203

    Article  CAS  PubMed  Google Scholar 

  77. Ribstein J, du Cailar G, Mimran A (1995) Combined renal effects of overweight and hypertension. Hypertension 26(4):610–615

    Article  CAS  PubMed  Google Scholar 

  78. Chagnac A et al (2000) Glomerular hemodynamics in severe obesity. Am J Physiol Renal Physiol 278(5):F817–F822

    CAS  PubMed  Google Scholar 

  79. Claus BO et al (2013) Augmented renal clearance is a common finding with worse clinical outcome in critically ill patients receiving antimicrobial therapy. J Crit Care 28(5):695–700

    Article  CAS  PubMed  Google Scholar 

  80. Udy AA et al (2010) Augmented renal clearance: implications for antibacterial dosing in the critically ill. Clin Pharmacokinet 49(1):1–16

    Article  CAS  PubMed  Google Scholar 

  81. Hites M et al (2014) Broad-spectrum beta-lactams in obese non-critically ill patients. Nutr Diabetes 4:e119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Udy AA et al (2014) Augmented renal clearance in the ICU: results of a multicenter observational study of renal function in critically ill patients with normal plasma creatinine concentrations*. Crit Care Med 42(3):520–527

    Article  CAS  PubMed  Google Scholar 

  83. Grundy SM (2004) Obesity, metabolic syndrome, and cardiovascular disease. J Clin Endocrinol Metab 89(6):2595–2600

    Article  CAS  PubMed  Google Scholar 

  84. WHO Expert Consultation (2004) Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 363(9403):157–163

    Article  Google Scholar 

  85. Cresci B et al (2014) False and true pre-treatment predictors of weight loss in obese patients starting a program for lifestyle change. Eat Weight Disord 19(4):489–494

    Google Scholar 

  86. Green B, Duffull SB (2004) What is the best size descriptor to use for pharmacokinetic studies in the obese? Br J Clin Pharmacol 58(2):119–133

    Article  PubMed  PubMed Central  Google Scholar 

  87. Duffull SB et al (2004) A standard weight descriptor for dose adjustment in the obese patient. Clin Pharmacokinet 43(15):1167–1178

    Article  PubMed  Google Scholar 

  88. Janmahasatian S et al (2005) Quantification of lean bodyweight. Clin Pharmacokinet 44(10):1051–1065

    Article  PubMed  Google Scholar 

  89. Wurtz R, Itokazu G, Rodvold K (1997) Antimicrobial dosing in obese patients. Clin Infect Dis 25(1):112–118

    Article  CAS  PubMed  Google Scholar 

  90. Janson B, Thursky K (2012) Dosing of antibiotics in obesity. Curr Opin Infect Dis 25(6):634–649

    Article  CAS  PubMed  Google Scholar 

  91. Penzak SR et al (1998) Therapeutic drug monitoring of vancomycin in a morbidly obese patient. Ther Drug Monit 20(3):261–265

    Article  CAS  PubMed  Google Scholar 

  92. Vance-Bryan K et al (1993) Effect of obesity on vancomycin pharmacokinetic parameters as determined by using a Bayesian forecasting technique. Antimicrob Agents Chemother 37(3):436–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bauer LA, Black DJ, Lill JS (1998) Vancomycin dosing in morbidly obese patients. Eur J Clin Pharmacol 54(8):621–625

    Article  CAS  PubMed  Google Scholar 

  94. McLeay SC et al (2012) The relationship between drug clearance and body size: systematic review and meta-analysis of the literature published from 2000 to 2007. Clin Pharmacokinet 51(5):319–330

    Article  CAS  PubMed  Google Scholar 

  95. Snider RD et al (1995) Accuracy of estimated creatinine clearance in obese patients with stable renal function in the intensive care unit. Pharmacotherapy 15(6):747–753

    CAS  PubMed  Google Scholar 

  96. Baptista JP et al (2011) A comparison of estimates of glomerular filtration in critically ill patients with augmented renal clearance. Crit Care 15(3):R139

    Article  PubMed  PubMed Central  Google Scholar 

  97. Cirillo M, Anastasio P, De Santo NG (2005) Relationship of gender, age, and body mass index to errors in predicted kidney function. Nephrol Dial Transplant 20(9):1791–1798

    Article  PubMed  Google Scholar 

  98. Verhave JC et al (2005) Estimation of renal function in subjects with normal serum creatinine levels: influence of age and body mass index. Am J Kidney Dis 46(2):233–241

    Article  CAS  PubMed  Google Scholar 

  99. Bouquegneau A et al (2016) Creatinine-based equations for the adjustment of drug dosage in an obese population. Br J Clin Pharmacol 81(2):349–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Bouquegneau A et al (2013) Modification of diet in renal disease versus chronic kidney disease epidemiology collaboration equation to estimate glomerular filtration rate in obese patients. Nephrol Dial Transplant 28(Suppl 4):iv122–iv130

    Article  PubMed  Google Scholar 

  101. Aggarwal N et al (2012) Creatinine-based estimations of kidney function are unreliable in obese kidney donors. J Transplant 2012:872894

    PubMed  PubMed Central  Google Scholar 

  102. Salazar DE, Corcoran GB (1988) Predicting creatinine clearance and renal drug clearance in obese patients from estimated fat-free body mass. Am J Med 84(6):1053–1060

    Article  CAS  PubMed  Google Scholar 

  103. Demirovic JA, Pai AB, Pai MP (2009) Estimation of creatinine clearance in morbidly obese patients. Am J Health Syst Pharm 66(7):642–648

    Article  CAS  PubMed  Google Scholar 

  104. Friedman AN et al (2010) Measuring the glomerular filtration rate in obese individuals without overt kidney disease. Nephron Clin Pract 116(3):c224–c234

    Article  PubMed  PubMed Central  Google Scholar 

  105. Friedman AN et al (2014) Predicting the glomerular filtration rate in bariatric surgery patients. Am J Nephrol 39(1):8–15

    Article  PubMed  Google Scholar 

  106. Marwyne MN et al (2011) Estimation of glomerular filtration rate using serum cystatin C in overweight and obese subjects. Med J Malaysia 66(4):313–317

    PubMed  Google Scholar 

  107. Roberts JA et al (2015) Plasma and target-site subcutaneous tissue population pharmacokinetics and dosing simulations of cefazolin in post-trauma critically ill patients. J Antimicrob Chemother 70(5):1495–1502

    Article  CAS  PubMed  Google Scholar 

  108. van Kralingen S et al (2011) Pharmacokinetics and protein binding of cefazolin in morbidly obese patients. Eur J Clin Pharmacol 67(10):985–992

    Article  CAS  PubMed  Google Scholar 

  109. Edmiston CE et al (2004) Perioperative antibiotic prophylaxis in the gastric bypass patient: do we achieve therapeutic levels? Surgery 136(4):738–747

    Article  PubMed  Google Scholar 

  110. Ho VP et al (2012) Cefazolin dosing for surgical prophylaxis in morbidly obese patients. Surg Infect (Larchmt) 13(1):33–37

    Article  Google Scholar 

  111. Hites M et al (2013) Case-control study of drug monitoring of beta-lactams in obese critically ill patients. Antimicrob Agents Chemother 57(2):708–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Cheatham SC et al (2014) Steady-state pharmacokinetics and pharmacodynamics of meropenem in morbidly obese patients hospitalized in an intensive care unit. J Clin Pharmacol 54(3):324–330

    Article  CAS  PubMed  Google Scholar 

  113. Alobaid AS et al (2016) Effect of obesity on the population pharmacokinetics of meropenem in critically ill patients. Antimicrob Agents Chemother 60(8):4577–4584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sturm AW et al (2014) Pharmacokinetic analysis of piperacillin administered with tazobactam in critically ill, morbidly obese surgical patients. Pharmacotherapy 34(1):28–35

    Article  CAS  PubMed  Google Scholar 

  115. Udy AA et al (2012) Subtherapeutic initial beta-lactam concentrations in select critically ill patients: association between augmented renal clearance and low trough drug concentrations. Chest 142(1):30–39

    Article  CAS  PubMed  Google Scholar 

  116. Alobaid AS et al (2016) What is the effect of obesity on piperacillin and meropenem trough concentrations in critically ill patients? J Antimicrob Chemother 71(3):696–702

    Article  CAS  PubMed  Google Scholar 

  117. Roberts JA, Lipman J (2013) Optimal doripenem dosing simulations in critically ill nosocomial pneumonia patients with obesity, augmented renal clearance, and decreased bacterial susceptibility. Crit Care Med 41(2):489–495

    Article  CAS  PubMed  Google Scholar 

  118. Ross AL et al (2013) Evaluation of extended interval dosing aminoglycosides in the morbidly obese population. Adv Pharmacol Sci 2013:194389

    PubMed  PubMed Central  Google Scholar 

  119. Pai MP, Nafziger AN, Bertino JS Jr (2011) Simplified estimation of aminoglycoside pharmacokinetics in underweight and obese adult patients. Antimicrob Agents Chemother 55(9):4006–4011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Taccone FS et al (2010) Revisiting the loading dose of amikacin for patients with severe sepsis and septic shock. Crit Care 14(2):R53

    Article  PubMed  PubMed Central  Google Scholar 

  121. James JK et al (1996) Comparison of conventional dosing versus continuous-infusion vancomycin therapy for patients with suspected or documented gram-positive infections. Antimicrob Agents Chemother 40(3):696–700

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Wysocki M et al (2001) Continuous versus intermittent infusion of vancomycin in severe Staphylococcal infections: prospective multicenter randomized study. Antimicrob Agents Chemother 45(9):2460–2467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Cataldo MA et al (2012) Continuous versus intermittent infusion of vancomycin for the treatment of Gram-positive infections: systematic review and meta-analysis. J Antimicrob Chemother 67(1):17–24

    Article  CAS  PubMed  Google Scholar 

  124. Lin H, Yeh DD, Levine AR (2016) Daily vancomycin dose requirements as a continuous infusion in obese versus non-obese SICU patients. Crit Care 20(1):205

    Article  PubMed  PubMed Central  Google Scholar 

  125. Lodise TP et al (2008) Larger vancomycin doses (at least four grams per day) are associated with an increased incidence of nephrotoxicity. Antimicrob Agents Chemother 52(4):1330–1336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Lodise TP et al (2009) Relationship between initial vancomycin concentration-time profile and nephrotoxicity among hospitalized patients. Clin Infect Dis 49(4):507–514

    Article  CAS  PubMed  Google Scholar 

  127. van Hal SJ, Paterson DL, Lodise TP (2013) Systematic review and meta-analysis of vancomycin-induced nephrotoxicity associated with dosing schedules that maintain troughs between 15 and 20 milligrams per liter. Antimicrob Agents Chemother 57(2):734–744

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Hanrahan TP et al (2014) Vancomycin-associated nephrotoxicity in the critically ill: a retrospective multivariate regression analysis*. Crit Care Med 42(12):2527–2536

    Article  CAS  PubMed  Google Scholar 

  129. Kees MG et al (2011) Pharmacokinetics of moxifloxacin in plasma and tissue of morbidly obese patients. J Antimicrob Chemother 66(10):2330–2335

    Article  CAS  PubMed  Google Scholar 

  130. Cook AM et al (2011) Pharmacokinetics of intravenous levofloxacin administered at 750 milligrams in obese adults. Antimicrob Agents Chemother 55(7):3240–3243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Luque S et al (2011) Levofloxacin weight-adjusted dosing and pharmacokinetic disposition in a morbidly obese patient. J Antimicrob Chemother 66(7):1653–1654

    Article  CAS  PubMed  Google Scholar 

  132. Pai MP, Cojutti P, Pea F (2014) Levofloxacin dosing regimen in severely morbidly obese patients (BMI >/=40 kg/m(2)) should be guided by creatinine clearance estimates based on ideal body weight and optimized by therapeutic drug monitoring. Clin Pharmacokinet 53(8):753–762

    Article  CAS  PubMed  Google Scholar 

  133. Malone RS et al (2001) Pharmacokinetics of levofloxacin and ciprofloxacin during continuous renal replacement therapy in critically ill patients. Antimicrob Agents Chemother 45(10):2949–2954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Utrup TR et al (2010) High-dose ciprofloxacin for serious gram-negative infection in an obese, critically ill patient receiving continuous venovenous hemodiafiltration. Ann Pharmacother 44(10):1660–1664

    Article  PubMed  Google Scholar 

  135. Bhalodi AA et al (2013) Pharmacokinetics of intravenous linezolid in moderately to morbidly obese adults. Antimicrob Agents Chemother 57(3):1144–1149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Mersfelder TL, Smith CL (2005) Linezolid pharmacokinetics in an obese patient. Am J Health Syst Pharm 62(5):464–467

    PubMed  Google Scholar 

  137. Tsuji Y et al (2012) Evaluation of the pharmacokinetics of linezolid in an obese Japanese patient. Scand J Infect Dis 44(8):626–629

    Article  CAS  PubMed  Google Scholar 

  138. Stein GE et al (2005) Pharmacokinetics and pharmacodynamics of linezolid in obese patients with cellulitis. Ann Pharmacother 39(3):427–432

    Article  CAS  PubMed  Google Scholar 

  139. Muzevich KM, Lee KB (2013) Subtherapeutic linezolid concentrations in a patient with morbid obesity and methicillin-resistant Staphylococcus aureus pneumonia: case report and review of the literature. Ann Pharmacother 47(6):e25

    Article  PubMed  Google Scholar 

  140. Mohamed AF et al (2012) Application of a loading dose of colistin methanesulfonate in critically ill patients: population pharmacokinetics, protein binding, and prediction of bacterial kill. Antimicrob Agents Chemother 56(8):4241–4249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Markou N et al (2008) Colistin serum concentrations after intravenous administration in critically ill patients with serious multidrug-resistant, gram-negative bacilli infections: a prospective, open-label, uncontrolled study. Clin Ther 30(1):143–151

    Article  CAS  PubMed  Google Scholar 

  142. Plachouras D et al (2009) Population pharmacokinetic analysis of colistin methanesulfonate and colistin after intravenous administration in critically ill patients with infections caused by gram-negative bacteria. Antimicrob Agents Chemother 53(8):3430–3436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Garonzik SM et al (2011) Population pharmacokinetics of colistin methanesulfonate and formed colistin in critically ill patients from a multicenter study provide dosing suggestions for various categories of patients. Antimicrob Agents Chemother 55(7):3284–3294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Gauthier TP et al (2012) Incidence and predictors of nephrotoxicity associated with intravenous colistin in overweight and obese patients. Antimicrob Agents Chemother 56(5):2392–2396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Xie J et al (2014) Optimal tigecycline dosage regimen is urgently needed: results from a pharmacokinetic/pharmacodynamic analysis of tigecycline by Monte Carlo simulation. Int J Infect Dis 18:62–67

    Article  CAS  PubMed  Google Scholar 

  146. Falagas ME et al (2014) Effectiveness and safety of high-dose tigecycline-containing regimens for the treatment of severe bacterial infections. Int J Antimicrob Agents 44(1):1–7

    Article  CAS  PubMed  Google Scholar 

  147. Falcone M et al (2013) Considerations for higher doses of daptomycin in critically ill patients with methicillin-resistant Staphylococcus aureus bacteremia. Clin Infect Dis 57(11):1568–1576

    Article  CAS  PubMed  Google Scholar 

  148. Dvorchik B, Damphousse D (2004) Single-dose pharmacokinetics of daptomycin in young and geriatric volunteers. J Clin Pharmacol 44(6):612–620

    Article  CAS  PubMed  Google Scholar 

  149. Pai MP et al (2007) Influence of morbid obesity on the single-dose pharmacokinetics of daptomycin. Antimicrob Agents Chemother 51(8):2741–2747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Dvorchik BH, Damphousse D (2005) The pharmacokinetics of daptomycin in moderately obese, morbidly obese, and matched nonobese subjects. J Clin Pharmacol 45(1):48–56

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Silvio Taccone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Hites, M., Taccone, F.S. (2018). Dosing in Obese Critically Ill Patients. In: Udy, A., Roberts, J., Lipman, J. (eds) Antibiotic Pharmacokinetic/Pharmacodynamic Considerations in the Critically Ill. Adis, Singapore. https://doi.org/10.1007/978-981-10-5336-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5336-8_4

  • Published:

  • Publisher Name: Adis, Singapore

  • Print ISBN: 978-981-10-5335-1

  • Online ISBN: 978-981-10-5336-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics