Skip to main content

Abstract

Pharmacodynamics is classically described as the effect of drugs on the body, which for most drugs relates to effects on pathophysiological processes so as to achieve the desired treatment outcomes. Unlike drugs which act on human cells/organs to elicit their pharmacological effect, antibiotics act on ‘non-physiologic’ bacterial cells to produce pharmacological effect. Because antibiotics are not meant to act on (affect) the human physiological system but rather directly bind or interact with bacterial cells, presents both advantages and challenges in terms of our ability to characterize dose–effect relationships. One important advantage is that, unlike other drugs, we can easily describe concentration–effect relationships of antibiotics in vitro and describe concentrations that achieve inhibition of bacterial growth or maximal killing [1]. This is advantageous not only for designing dosing regimens, but also for optimizing treatment for individual patients relative to the susceptibility of the causative pathogen. Further, advanced in vitro infection models that can simulate human-like pharmacokinetic exposure of bacteria to changing antibiotics concentrations are now available to predict efficacy of novel dosing regimens in patients [2]. On the other hand, whilst for drugs which act by modifying human physiology (e.g. antihypertensive drugs) the actual clinical effect can be readily monitored by an objective clinical end point (e.g. blood pressure monitoring), such a direct objective end point is not possible for antibiotics which act directly on bacterial cells for therapeutic action, i.e. there is no direct human physiological change (signal) induced by the therapeutic action of antibiotics on bacteria. The clinical end point of antibiotic therapy, resolution of infection, remains largely subjective although a number of physiological markers of infection are considered useful surrogate indicators [3]. Unfortunately, the relationship between antibiotic exposure and biomarkers of infection that could signal optimal treatment outcome is not yet well established to guide the design and optimization of dosing regimens. It has not yet been possible to optimize antibiotic dosing based on a graded clinical response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Drusano GL (2004) Antimicrobial pharmacodynamics: critical interactions of ‘bug and drug’. Nat Rev Microbiol 2(4):289–300

    Article  CAS  PubMed  Google Scholar 

  2. Cadwell JJS (2012) The hollow fiber infection model for antimicrobial pharmacodynamics and pharmacokinetics. Adv Pharmacoepidemiol Drug Saf S1. doi:10.4172/2167-1052.S1-007

  3. Christ-Crain M, Muller B (2007) Biomarkers in respiratory tract infections: diagnostic guides to antibiotic prescription, prognostic markers and mediators. Eur Respir J 30(3):556–573

    Article  CAS  PubMed  Google Scholar 

  4. Wheat PF (2001) History and development of antimicrobial susceptibility testing methodology. J Antimicrob Chemother 48(Suppl 1):1–4

    Article  CAS  PubMed  Google Scholar 

  5. Levison ME (2004) Pharmacodynamics of antimicrobial drugs. Infect Dis Clin N Am 18(3):451–465, vii

    Article  Google Scholar 

  6. Drusano GL, Fregeau C, Liu W, Brown DL, Louie A (2010) Impact of burden on granulocyte clearance of bacteria in a mouse thigh infection model. Antimicrob Agents Chemother 54(10):4368–4372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. European Committee for Antimicrobial Susceptibility Testing of the European Society of Clinical M, Infectious D (2003) Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin Microbiol Infect 9(8):ix–xv

    Article  Google Scholar 

  8. Roberts JA, Lipman J (2009) Pharmacokinetic issues for antibiotics in the critically ill patient. Crit Care Med 37(3):840–851. Quiz 859

    Article  CAS  PubMed  Google Scholar 

  9. Dalhoff A, Ambrose PG, Mouton JW (2009) A long journey from minimum inhibitory concentration testing to clinically predictive breakpoints: deterministic and probabilistic approaches in deriving breakpoints. Infection 37(4):296–305

    Article  CAS  PubMed  Google Scholar 

  10. MacGowan AP, Wise R (2001) Establishing MIC breakpoints and the interpretation of in vitro susceptibility tests. J Antimicrob Chemother 48(Suppl 1):17–28

    Article  CAS  PubMed  Google Scholar 

  11. Craig W (1993) Pharmacodynamics of antimicrobial agents as a basis for determining dosage regimens. Eur J Clin Microbiol Infect Dis 12(Suppl 1):S6–S8

    Article  CAS  PubMed  Google Scholar 

  12. Craig WA (1998) Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis 26(1):1–10. quiz 11-12

    Article  CAS  PubMed  Google Scholar 

  13. Eagle H, Fleischman R, Levy M (1953) “Continuous” vs. “discontinuous” therapy with penicillin; the effect of the interval between injections on therapeutic efficacy. N Engl J Med 248(12):481–488

    Article  CAS  PubMed  Google Scholar 

  14. Vogelman B, Gudmundsson S, Leggett J, Turnidge J, Ebert S, Craig WA (1988) Correlation of antimicrobial pharmacokinetic parameters with therapeutic efficacy in an animal model. J Infect Dis 158(4):831–847

    Article  CAS  PubMed  Google Scholar 

  15. Fluckiger U, Segessenmann C, Gerber AU (1991) Integration of pharmacokinetics and pharmacodynamics of imipenem in a human-adapted mouse model. Antimicrob Agents Chemother 35(9):1905–1910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Craig WA, Ebert SC (1990) Killing and regrowth of bacteria in vitro: a review. Scand J Infect Dis Suppl 74:63–70

    CAS  PubMed  Google Scholar 

  17. Turnidge JD (1998) The pharmacodynamics of beta-lactams. Clin Infect Dis 27(1):10–22

    Article  CAS  PubMed  Google Scholar 

  18. Roosendaal R, Bakker-Woudenberg IA, van den Berghe-van Raffe M, Michel MF (1986) Continuous versus intermittent administration of ceftazidime in experimental Klebsiella pneumoniae pneumonia in normal and leukopenic rats. Antimicrob Agents Chemother 30(3):403–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Casal J, Gimenez MJ, Aguilar L, Yuste J, Jado I, Tarrago D, Fenoll A (2002) Beta-lactam activity against resistant pneumococcal strains is enhanced by the immune system. J Antimicrob Chemother 50(Suppl S2):83–86

    Article  CAS  PubMed  Google Scholar 

  20. Gerber AU, Brugger HP, Feller C, Stritzko T, Stalder B (1986) Antibiotic therapy of infections due to Pseudomonas aeruginosa in normal and granulocytopenic mice: comparison of murine and human pharmacokinetics. J Infect Dis 153(1):90–97

    Article  CAS  PubMed  Google Scholar 

  21. Ariano RE, Nyhlen A, Donnelly JP, Sitar DS, Harding GK, Zelenitsky SA (2005) Pharmacokinetics and pharmacodynamics of meropenem in febrile neutropenic patients with bacteremia. Ann Pharmacother 39(1):32–38

    Article  CAS  PubMed  Google Scholar 

  22. McKinnon PS, Paladino JA, Schentag JJ (2008) Evaluation of area under the inhibitory curve (AUIC) and time above the minimum inhibitory concentration (T>MIC) as predictors of outcome for cefepime and ceftazidime in serious bacterial infections. Int J Antimicrob Agents 31(4):345–351

    Article  CAS  PubMed  Google Scholar 

  23. Sime FB, Roberts MS, Peake SL, Lipman J, Roberts JA (2012) Does beta-lactam pharmacokinetic variability in critically ill patients justify therapeutic drug monitoring? A systematic review. Ann Intensive Care 2(1):35

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wong G, Brinkman A, Benefield RJ, Carlier M, De Waele JJ, El Helali N, Frey O, Harbarth S, Huttner A, McWhinney B et al (2014) An international, multicentre survey of beta-lactam antibiotic therapeutic drug monitoring practice in intensive care units. J Antimicrob Chemother 69(5):1416–1423

    Article  CAS  PubMed  Google Scholar 

  25. De Waele JJ, Carrette S, Carlier M, Stove V, Boelens J, Claeys G, Leroux-Roels I, Hoste E, Depuydt P, Decruyenaere J et al (2014) Therapeutic drug monitoring-based dose optimisation of piperacillin and meropenem: a randomised controlled trial. Intensive Care Med 40(3):380–387

    Article  PubMed  Google Scholar 

  26. Roberts JA, Ulldemolins M, Roberts MS, McWhinney B, Ungerer J, Paterson DL, Lipman J (2010) Therapeutic drug monitoring of beta-lactams in critically ill patients: proof of concept. Int J Antimicrob Agents 36(4):332–339

    Article  CAS  PubMed  Google Scholar 

  27. Mouton JW, den Hollander JG (1994) Killing of Pseudomonas aeruginosa during continuous and intermittent infusion of ceftazidime in an in vitro pharmacokinetic model. Antimicrob Agents Chemother 38(5):931–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li C, Du X, Kuti JL, Nicolau DP (2007) Clinical pharmacodynamics of meropenem in patients with lower respiratory tract infections. Antimicrob Agents Chemother 51(5):1725–1730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tam VH, Schilling AN, Neshat S, Poole K, Melnick DA, Coyle EA (2005) Optimization of meropenem minimum concentration/MIC ratio to suppress in vitro resistance of Pseudomonas aeruginosa. Antimicrob Agents Chemother 49(12):4920–4927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Seok J, Warren HS, Cuenca AG, Mindrinos MN, Baker HV, Xu W, Richards DR, McDonald-Smith GP, Gao H, Hennessy L et al (2013) Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci U S A 110(9):3507–3512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Raven K (2012) Rodent models of sepsis found shockingly lacking. Nat Med 18(7):998

    Article  CAS  PubMed  Google Scholar 

  32. Larsson AJ, Walker KJ, Raddatz JK, Rotschafer JC (1996) The concentration-independent effect of monoexponential and biexponential decay in vancomycin concentrations on the killing of Staphylococcus aureus under aerobic and anaerobic conditions. J Antimicrob Chemother 38(4):589–597

    Article  CAS  PubMed  Google Scholar 

  33. Lowdin E, Odenholt I, Cars O (1998) In vitro studies of pharmacodynamic properties of vancomycin against Staphylococcus aureus and Staphylococcus epidermidis. Antimicrob Agents Chemother 42(10):2739–2744

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Henson KE, Levine MT, Wong EA, Levine DP (2015) Glycopeptide antibiotics: evolving resistance, pharmacology and adverse event profile. Expert Rev Anti-Infect Ther 13(10):1265–1278

    Article  CAS  PubMed  Google Scholar 

  35. Moise-Broder PA, Forrest A, Birmingham MC, Schentag JJ (2004) Pharmacodynamics of vancomycin and other antimicrobials in patients with Staphylococcus aureus lower respiratory tract infections. Clin Pharmacokinet 43(13):925–942

    Article  CAS  PubMed  Google Scholar 

  36. Rybak MJ, Lomaestro BM, Rotschafer JC, Moellering RC, Craig WA, Billeter M, Dalovisio JR, Levine DP (2009) Vancomycin therapeutic guidelines: a summary of consensus recommendations from the infectious diseases Society of America, the American Society of Health-System Pharmacists, and the Society of Infectious Diseases Pharmacists. Clin Infect Dis 49(3):325–327

    Article  PubMed  Google Scholar 

  37. Neely MN, Youn G, Jones B, Jelliffe RW, Drusano GL, Rodvold KA, Lodise TP (2014) Are vancomycin trough concentrations adequate for optimal dosing? Antimicrob Agents Chemother 58(1):309–316

    Article  PubMed  PubMed Central  Google Scholar 

  38. Craig WA (2003) Basic pharmacodynamics of antibacterials with clinical applications to the use of beta-lactams, glycopeptides, and linezolid. Infect Dis Clin N Am 17(3):479–501

    Article  Google Scholar 

  39. Matsumoto K, Watanabe E, Kanazawa N, Fukamizu T, Shigemi A, Yokoyama Y, Ikawa K, Morikawa N, Takeda Y (2016) Pharmacokinetic/pharmacodynamic analysis of teicoplanin in patients with MRSA infections. Clin Pharm 8:15–18

    Google Scholar 

  40. Hagihara M, Umemura T, Kimura M, Mori T, Hasegawa T, Mikamo H (2012) Exploration of optimal teicoplanin dosage based on pharmacokinetic parameters for the treatment of intensive care unit patients infected with methicillin-resistant Staphylococcus aureus. J Infect Chemother 18(1):10–16

    Article  CAS  PubMed  Google Scholar 

  41. Andes D, van Ogtrop ML, Peng J, Craig WA (2002) In vivo pharmacodynamics of a new oxazolidinone (linezolid). Antimicrob Agents Chemother 46(11):3484–3489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jacqueline C, Batard E, Perez L, Boutoille D, Hamel A, Caillon J, Kergueris MF, Potel G, Bugnon D (2002) In vivo efficacy of continuous infusion versus intermittent dosing of linezolid compared to vancomycin in a methicillin-resistant Staphylococcus aureus rabbit endocarditis model. Antimicrob Agents Chemother 46(12):3706–3711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rayner CR, Forrest A, Meagher AK, Birmingham MC, Schentag JJ (2003) Clinical pharmacodynamics of linezolid in seriously ill patients treated in a compassionate use programme. Clin Pharmacokinet 42(15):1411–1423

    Article  CAS  PubMed  Google Scholar 

  44. Wong G, Sime FB, Lipman J, Roberts JA (2014) How do we use therapeutic drug monitoring to improve outcomes from severe infections in critically ill patients? BMC Infect Dis 14:288

    Article  PubMed  PubMed Central  Google Scholar 

  45. Agwuh KN, MacGowan A (2006) Pharmacokinetics and pharmacodynamics of the tetracyclines including glycylcyclines. J Antimicrob Chemother 58(2):256–265

    Article  CAS  PubMed  Google Scholar 

  46. Meagher AK, Passarell JA, Cirincione BB, Van Wart SA, Liolios K, Babinchak T, Ellis-Grosse EJ, Ambrose PG (2007) Exposure-response analyses of tigecycline efficacy in patients with complicated skin and skin-structure infections. Antimicrob Agents Chemother 51(6):1939–1945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. van Ogtrop ML, Andes D, Stamstad TJ, Conklin B, Weiss WJ, Craig WA, Vesga O (2000) In vivo pharmacodynamic activities of two glycylcyclines (GAR-936 and WAY 152,288) against various gram-positive and gram-negative bacteria. Antimicrob Agents Chemother 44(4):943–949

    Article  PubMed  PubMed Central  Google Scholar 

  48. Jones RN, Ferraro MJ, Reller LB, Schreckenberger PC, Swenson JM, Sader HS (2007) Multicenter studies of tigecycline disk diffusion susceptibility results for Acinetobacter spp. J Clin Microbiol 45(1):227–230

    Article  CAS  PubMed  Google Scholar 

  49. Petersen PJ, Jacobus NV, Weiss WJ, Sum PE, Testa RT (1999) In vitro and in vivo antibacterial activities of a novel glycylcycline, the 9-t-butylglycylamido derivative of minocycline (GAR-936). Antimicrob Agents Chemother 43(4):738–744

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Passarell JA, Meagher AK, Liolios K, Cirincione BB, Van Wart SA, Babinchak T, Ellis-Grosse EJ, Ambrose PG (2008) Exposure-response analyses of tigecycline efficacy in patients with complicated intra-abdominal infections. Antimicrob Agents Chemother 52(1):204–210

    Article  CAS  PubMed  Google Scholar 

  51. Lacy MK, Nicolau DP, Nightingale CH, Quintiliani R (1998) The pharmacodynamics of aminoglycosides. Clin Infect Dis 27(1):23–27

    Article  CAS  PubMed  Google Scholar 

  52. Ambrose PG Jr, Owens RC, Grasela D (2000) Antimicrobial pharmacodynamics. Med Clin North Am 84(6):1431–1446

    Article  CAS  PubMed  Google Scholar 

  53. Turnidge J (2003) Pharmacodynamics and dosing of aminoglycosides. Infect Dis Clin N Am 17(3):503–528, v

    Article  Google Scholar 

  54. Moore RD, Lietman PS, Smith CR (1987) Clinical response to aminoglycoside therapy: importance of the ratio of peak concentration to minimal inhibitory concentration. J Infect Dis 155(1):93–99

    Article  CAS  PubMed  Google Scholar 

  55. Craig WA, Redington J, Ebert SC (1991) Pharmacodynamics of amikacin in vitro and in mouse thigh and lung infections. J Antimicrob Chemother 27(Suppl C):29–40

    Article  CAS  PubMed  Google Scholar 

  56. Pea F, Poz D, Viale P, Pavan F, Furlanut M (2006) Which reliable pharmacodynamic breakpoint should be advised for ciprofloxacin monotherapy in the hospital setting? A TDM-based retrospective perspective. J Antimicrob Chemother 58(2):380–386

    Article  CAS  PubMed  Google Scholar 

  57. Preston SL, Drusano GL, Berman AL, Fowler CL, Chow AT, Dornseif B, Reichl V, Natarajan J, Corrado M (1998) Pharmacodynamics of levofloxacin: a new paradigm for early clinical trials. JAMA 279(2):125–129

    Article  CAS  PubMed  Google Scholar 

  58. Rodvold KA, Neuhauser M (2001) Pharmacokinetics and pharmacodynamics of fluoroquinolones. Pharmacotherapy 21(10 Pt 2):233S–252S

    Article  CAS  PubMed  Google Scholar 

  59. Forrest A, Nix DE, Ballow CH, Goss TF, Birmingham MC, Schentag JJ (1993) Pharmacodynamics of intravenous ciprofloxacin in seriously ill patients. Antimicrob Agents Chemother 37(5):1073–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zelenitsky SA, Ariano RE (2010) Support for higher ciprofloxacin AUC 24/MIC targets in treating Enterobacteriaceae bloodstream infection. J Antimicrob Chemother 65(8):1725–1732

    Article  CAS  PubMed  Google Scholar 

  61. Lister PD, Sanders CC (1999) Pharmacodynamics of levofloxacin and ciprofloxacin against Streptococcus pneumoniae. J Antimicrob Chemother 43(1):79–86

    Article  CAS  PubMed  Google Scholar 

  62. Forrest A, Chodosh S, Amantea MA, Collins DA, Schentag JJ (1997) Pharmacokinetics and pharmacodynamics of oral grepafloxacin in patients with acute bacterial exacerbations of chronic bronchitis. J Antimicrob Chemother 40(Suppl A):45–57

    Article  CAS  PubMed  Google Scholar 

  63. Turnidge J (1999) Pharmacokinetics and pharmacodynamics of fluoroquinolones. Drugs 58(Suppl 2):29–36

    Article  CAS  PubMed  Google Scholar 

  64. Roberts JA, Abdul-Aziz MH, Lipman J, Mouton JW, Vinks AA, Felton TW, Hope WW, Farkas A, Neely MN, Schentag JJ et al (2014) Individualised antibiotic dosing for patients who are critically ill: challenges and potential solutions. Lancet Infect Dis 14(6):498–509

    Article  PubMed  PubMed Central  Google Scholar 

  65. Lodise TP, Butterfield J (2011) Use of pharmacodynamic principles to inform beta-lactam dosing: “S” does not always mean success. J Hosp Med 6(Suppl 1):S16–S23

    Article  PubMed  Google Scholar 

  66. Velkov T, Bergen PJ, Lora-Tamayo J, Landersdorfer CB, Li J (2013) PK/PD models in antibacterial development. Curr Opin Microbiol 16(5):573–579

    Article  CAS  PubMed  Google Scholar 

  67. Sime FB, Roberts MS, Roberts JA (2015) Optimization of dosing regimens and dosing in special populations. Clin Microbiol Infect 21(10):886–893

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason A. Roberts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Sime, F.B., Roberts, J.A. (2018). Antibiotic Pharmacodynamics. In: Udy, A., Roberts, J., Lipman, J. (eds) Antibiotic Pharmacokinetic/Pharmacodynamic Considerations in the Critically Ill. Adis, Singapore. https://doi.org/10.1007/978-981-10-5336-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5336-8_2

  • Published:

  • Publisher Name: Adis, Singapore

  • Print ISBN: 978-981-10-5335-1

  • Online ISBN: 978-981-10-5336-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics