Skip to main content

Leveraging Topological and Temporal Structure of Hospital Referral Networks for Epidemic Control

Part of the Theoretical Biology book series (THBIO)

Abstract

Antimicrobial-resistant pathogens constitute a major threat for health care systems worldwide. The hospital-related pathway is a key mechanism of their spread. Contrary to intra-hospital transmission data that requires sophisticated contact tracing technologies, data on inter-hospital transmission is collected on a regular basis. We investigate the dataset of patient referrals between hospitals in a large region of Germany. This dataset contains approximately one million patients over a 3-year period. The dataset is used to build a dynamic network of hospitals where nodes are hospitals and edges represent movements of patients between them. We consider the worst-case scenario of a highly contagious disease corresponding to deterministic infection dynamics. Furthermore, we investigate the impact on epidemic processes of the correction to the temporal network due to home (or community) visits of possibly contagious patients returning to hospitals. Moreover, we implement an extensive stochastic agent-based computational model of epidemics on this network. By leveraging the topological and temporal network structure for epidemic control, we propose intervention schemes able to hinder spread. Our approach can be used to design optimal control strategies for containment of nosocomial diseases in health-care networks.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-10-5287-3_9
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-981-10-5287-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 9.1
Fig. 9.2
Fig. 9.3
Fig. 9.4
Fig. 9.5
Fig. 9.6
Fig. 9.7
Fig. 9.8
Fig. 9.9
Fig. 9.10
Fig. 9.11
Fig. 9.12
Fig. 9.13

Notes

  1. 1.

    However there were around 300 patients which were apparently transferred between 3 hospitals in one single day. We exclude those from the network reconstruction.

  2. 2.

    This weekly dynamics will be also reflected in the epidemic dynamics (Fig. 9.6).

  3. 3.

    Its element a ij = 1 if there is the edge ji and zero otherwise.

  4. 4.

    Since hospital stays could fall outside the interval (T, 2T], we choose to cut the stays to fit into the interval.

References

  1. Cassini, A., Plachouras, D., Eckmanns, T., Sin, M.A., Blank, H.P., Ducomble, T., Haller, S., Harder, T., Klingeberg, A., Sixtensson, M., et al.: PLoS Med. 13(10), e1002150 (2016)

    CrossRef  Google Scholar 

  2. O’Neill, J.: The review on antimicrobial resistance. Tackling drug-resistant infections globally: final report and recommendations. http://amr-review.org [WebCite Cache ID 6jI5znBnd] (2016). Accessed 26 July 2016

  3. Keeling, M.J., Danon, L., Vernon, M.C., House, T.A.: Proc. Natl. Acad. Sci. 107(19), 8866 (2010)

    CrossRef  Google Scholar 

  4. Belik, V., Geisel, T., Brockmann, D.: Phys. Rev. X 1(1), 011001 (2011)

    Google Scholar 

  5. Rosvall, M., Esquivel, A.V., Lancichinetti, A., West, J.D., Lambiotte, R.: Nat. Commun. 5, 4630 (2014)

    CrossRef  Google Scholar 

  6. Scholtes, I., Wider, N., Pfitzner, R., Garas, A., Tessone, C.J., Schweitzer, F.: Nat. Commun. 5, 5024 (2014)

    CrossRef  Google Scholar 

  7. Holme, P., Saramäki, J.: Phys. Rep. 519(3), 97 (2012)

    CrossRef  Google Scholar 

  8. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Int. J. Parallel Emergent Distrib. Syst. 27(5), 387 (2012)

    CrossRef  Google Scholar 

  9. Fernandez-Gracia, J., Onnela, J.P., Barnett, M., Eguiluz, V.M., Christakis, N.A.: Spread of pathogens in the patient transfer network of US hospitals. arXiv preprint arXiv:1504.08343 (2015)

    Google Scholar 

  10. Donker, T., Wallinga, J., Slack, R., Grundmann, H.: PLoS One 7(4), 1 (2012)

    CrossRef  Google Scholar 

  11. Ohst, J., Liljeros, F., Stenhem, M., Holme, P.: EPJ Data Sci. 3(1), 1 (2014)

    CrossRef  Google Scholar 

  12. Rocha, L.E., Singh, V., Esch, M., Lenaerts, T., Stenhem, M., Liljeros, F., Thorson, A.: arXiv preprint arXiv:1611.06784 (2016)

    Google Scholar 

  13. Karkada, U.H., Adamic, L., Kahn, J.M., Iwashyna, T.J.: Intensive Care Med. 37(10), 1633 (2011)

    CrossRef  Google Scholar 

  14. Schneider, C.M., Belik, V., Couronné, T., Smoreda, Z., González, M.C.: J. R. Soc. Interface 10(84), 20130246 (2013)

    CrossRef  Google Scholar 

  15. Kovanen, L., Karsai, M., Kaski, K., Kertész, J., Saramäki, J.: Temporal motifs. In: Temporal Networks, pp. 119–133. Springer, Berlin/Heidelberg (2013)

    Google Scholar 

  16. Lentz, H.H.K., Koher, A., Hövel, P., Gethmann, J., Sauter-Louis, C., Selhorst, T., Conraths, F.: PLoS One 11(5), e0155196 (2016)

    CrossRef  Google Scholar 

  17. Wieler, L.H., Ewers, C., Guenther, S., Walther, B., Lübke-Becker, A.: Int. J. Med. Microbiol. 303(6–7), 380 (2013)

    Google Scholar 

  18. Belik, V., Hövel, P., Mikolajczyk, R.: Control of epidemics on hospital networks. In: Control of Self-Organizing Nonlinear Systems, pp. 431–440. Springer International Publishing, Cham (2016)

    Google Scholar 

  19. Lentz, H., Selhorst, T., Sokolov, I.M.: Phys. Rev. Lett. 110(11), 118701 (2013)

    CrossRef  Google Scholar 

  20. Koher, A., Lentz, H.H.K., Hövel, P., Sokolov, I.: PLoS One 11(4), e0151209 (2016)

    CrossRef  Google Scholar 

  21. Konschake, M., Lentz, H.H.K., Conraths, F.J., Hövel, P., Selhorst, T.: PLoS One 8(2), e55223 (2013)

    CrossRef  Google Scholar 

  22. Marschall, J., Mühlemann, K.: Infect. Control 27(11), 1206 (2006)

    Google Scholar 

  23. Génois, M., Vestergaard, C.L., Cattuto, C., Barrat, A.: Nat. Commun. 6, 8860 (2015)

    CrossRef  Google Scholar 

  24. Gillespie, D.T.: J. Phys. Chem. 81(25), 2340 (1977)

    CrossRef  Google Scholar 

  25. Cormen, T.H.: Introduction to Algorithms. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  26. Liu, S., Perra, N., Karsai, M., Vespignani, A.: Phys. Rev. Lett. 112(11), 118702 (2014)

    CrossRef  Google Scholar 

  27. Belik, V., Fengler, A., Fiebig, F., Lentz, H.H.K., Hövel, P.: arXiv preprint arXiv:1509.04054 (2016)

    Google Scholar 

  28. Brockmann, D., Helbing, D.: Science 342(6164), 1337 (2013)

    CrossRef  Google Scholar 

  29. Iannelli, F., Koher, A., Brockmann, D., Hövel, P., Sokolov, I.M.: Phys. Rev. E 97, 012313 (2017)

    CrossRef  Google Scholar 

Download references

Acknowledgements

All the authors acknowledge the courtesy of the AOK Niedersachsen for providing the anonymized data on patient referrals. VB and PH acknowledge funding by the Deutsche Forschungsgemeinschaft in the framework of Collaborative Research Center 910. At the early stage of this study VB was financially supported by the fellowship “Computational Sciences” of the VolkswagenStiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitaly Belik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Belik, V., Karch, A., Hövel, P., Mikolajczyk, R. (2017). Leveraging Topological and Temporal Structure of Hospital Referral Networks for Epidemic Control. In: Masuda, N., Holme, P. (eds) Temporal Network Epidemiology. Theoretical Biology. Springer, Singapore. https://doi.org/10.1007/978-981-10-5287-3_9

Download citation