Skip to main content

Sensitivity to Temporal and Topological Misinformation in Predictions of Epidemic Outbreaks

Part of the Theoretical Biology book series (THBIO)

Abstract

Structures both in the network of who interact with whom, and the timing of these contacts, affect epidemic outbreaks. In practical applications, such information would frequently be inaccurate. In this work, we explore how the accuracy in the prediction of the final outbreak size and the time to extinction of the outbreak depend on the quality of the contact information. We find a fairly general stretched exponential dependence of the deviation from the true outbreak sizes and extinction times on the frequency of errors in both temporal and topological information.

Keywords

  • Outbreak Size
  • Extinction Time
  • Temporary Network Structure
  • Hospital Data Set
  • Infectious Individuals

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-10-5287-3_3
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-981-10-5287-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 3.1
Fig. 3.2
Fig. 3.3
Fig. 3.4
Fig. 3.5
Fig. 3.6
Fig. 3.7

References

  1. Hethcote, H.W.: Infectious diseases in humans. SIAM Rev. 32(4), 599 (2000)

    CrossRef  MATH  Google Scholar 

  2. Keeling, M.J., Eames, K.T.: Social factors in epidemiology. J. R. Soc. Interface 2(4), 295 (2005)

    CrossRef  Google Scholar 

  3. Holme, P., Saramäki, J.: Nosocomial infections. Phys. Rep. 519(3), 97 (2012)

    CrossRef  Google Scholar 

  4. Holme, P.: The making of sixty nine days of close encounters at the science gallery. Eur. Phys. J. B 88, 234 (2015)

    CrossRef  Google Scholar 

  5. Giesecke, J.: Modern Infectious Disease Epidemiology, 2nd edn. Arnold, London (2002)

    Google Scholar 

  6. Anderson, R.M., May, R.M.: Infectious Diseases in Humans. Oxford University Press, Oxford (1992)

    Google Scholar 

  7. Bauch, C.T., Galvani, A.P.: Compensating for population sampling in simulations of epidemic spread on temporal contact networks. Science 32, 47 (2013)

    CrossRef  Google Scholar 

  8. Colizza, V., Barrat, A., Barthélemy, M., Vespignani, A.: Modern infectious disease epidemiology. BMC Med. 5(1), 34 (2007)

    CrossRef  Google Scholar 

  9. Holme, P.: Data on face-to-face contacts in an office building suggest a low-cost vaccination strategy based on community linkers. Sci. Rep. 5, 14462 (2015)

    CrossRef  Google Scholar 

  10. Dawson, P.M., Werkman, M., Brooks-Pollock, E., Tildesley, M.J.: The mathematics of infectious diseases. Proc. R. Soc. Lond. B Biol. Sci. 282(1808), 20150205 (2015)

    CrossRef  Google Scholar 

  11. Génois, M., Vestergaard, C.L., Cattuto, C., Barrat, A.: Social organization patterns can lower disease risk without associated disease avoidance or immunity. Nat. Commun. 6, 8860 EP (2015)

    Google Scholar 

  12. Meyers, L.A., Pourbohloul, B., Newman, M., Skowronski, D.M., Brunham, R.C.: Network reachability of real-world contact sequences. J. Theor. Biol. 232, 7181 (2005)

    CrossRef  Google Scholar 

  13. Rocha, L.E.C., Blondel, V.D.: Model versions and fast algorithms for network epidemiology. PLoS Comput. Biol. 9(3), e1002974 (2013)

    CrossRef  Google Scholar 

  14. Rocha, L.E.C., Liljeros, F., Holme, P.: Information content of contact-pattern representations and predictability of epidemic outbreaks. PLoS Comput. Biol. 7(3), e1001109 (2011)

    CrossRef  Google Scholar 

  15. Rocha, L.E.C., Liljeros, F., Holme, P.: Modern temporal network theory: a colloquium. Proc. Natl. Acad. Sci. USA 107, 5706 (2010)

    CrossRef  Google Scholar 

  16. Isella, L., Stehlé, J., Barrat, A., Cattuto, C., Pinton, J.F., van den Broeck, W.: Temporal network structures controlling disease spreading. J. Theor. Biol. 271, 166 (2011)

    CrossRef  Google Scholar 

  17. Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.F., Khanafer, N., Régis, C., Kim, B.A., Comte, B., Voirin, N.: Birth and death of links control disease spreading in empirical contact networks. PLoS One 8, e73970 (2013)

    CrossRef  Google Scholar 

  18. Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.F., Quaggiotto, M., van den Broeck, W., Régis, C., Lina, B., Vanhems, P.: The basic reproduction number as a predictor for epidemic outbreaks in temporal networks. PLoS One 6, e23176 (2011)

    CrossRef  Google Scholar 

  19. Van den Broeck, W., Quaggiotto, M., Isella, L., Barrat, A., Cattuto, C.: Temporal networks. Leonardo 45(3), 285 (2012)

    CrossRef  Google Scholar 

  20. Génois, M., Vestergaard, C.L., Fournet, J., Panisson, A., Bonmarin, I., Barrat, A.: What’s in a crowd? Analysis of face-to-face behavioral networks. Netw. Sci. 3, 326 (2015)

    CrossRef  Google Scholar 

  21. Lloyd, A.L.: Small but slow world: how network topology and burstiness slow down spreading. Theor. Popul. Biol. 60, 59 (2001)

    CrossRef  Google Scholar 

  22. Holme, P.: J. Networks and epidemic models. Logist. Eng. Univ. 5, 51 (2014)

    Google Scholar 

  23. Holme, P.: Stretched exponential distributions in nature and economy: “fat tails” with characteristic scales. Phys. Rev. E 71(4), 046119 (2005)

    CrossRef  Google Scholar 

  24. Karsai, M., Kivelä, M., Pan, R.K., Kaski, K., Kertész, J., Barabási, A.L., Saramäki, J.: Realistic distributions of infectious periods in epidemic models: changing patterns of persistence and dynamics. Phys. Rev. E 83(2), 025102R (2011)

    CrossRef  Google Scholar 

  25. Breathnach, A.S.: Network theory and SARS: predicting outbreak diversity. Medicine 33(3), 22 (2005)

    CrossRef  Google Scholar 

  26. Holme, P.: Bursts of vertex activation and epidemics in evolving networks. Phys. Rev. E 64, 022305 (2016)

    CrossRef  Google Scholar 

  27. Laherrère, J., Information dynamics shape the sexual networks of internet-mediated prostitution. Sornette, D.: Eur. Phys. J. B 2(4), 525 (1998)

    Google Scholar 

  28. Holme, P., Masuda, N.: Simulated epidemics in an empirical spatiotemporal network of 50,185 sexual contacts. PLoS One 10(3), e0120567 (2015)

    CrossRef  Google Scholar 

  29. Hock, K., Fefferman, N.H.: High-resolution measurements of face-to-face contact patterns in a primary school. Ecol. Complex. 12, 34 (2012)

    CrossRef  Google Scholar 

  30. Holme, P., Liljeros, F.: Implementation of web-based respondent driven sampling among men who have sex with men in Sweden. Sci. Rep. 4, 4999 (2014)

    CrossRef  Google Scholar 

  31. Valdano, E., Poletto, C., Giovannini, A., Palma, D., Savini, L., Colizza, V.: Predicting epidemic risk from past temporal contact data. PLoS Comput. Biol. 11(3), e1004152 (2015)

    CrossRef  Google Scholar 

  32. Strömdahl, S., Lu, X., Bengtsson, L., Liljeros, F., Thorson, A.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PLoS One 10(10), e0138599 (2015)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petter Holme .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Holme, P., Rocha, L.E.C. (2017). Sensitivity to Temporal and Topological Misinformation in Predictions of Epidemic Outbreaks. In: Masuda, N., Holme, P. (eds) Temporal Network Epidemiology. Theoretical Biology. Springer, Singapore. https://doi.org/10.1007/978-981-10-5287-3_3

Download citation