Sensitivity to Temporal and Topological Misinformation in Predictions of Epidemic Outbreaks

Part of the Theoretical Biology book series (THBIO)


Structures both in the network of who interact with whom, and the timing of these contacts, affect epidemic outbreaks. In practical applications, such information would frequently be inaccurate. In this work, we explore how the accuracy in the prediction of the final outbreak size and the time to extinction of the outbreak depend on the quality of the contact information. We find a fairly general stretched exponential dependence of the deviation from the true outbreak sizes and extinction times on the frequency of errors in both temporal and topological information.


  1. 1.
    Hethcote, H.W.: Infectious diseases in humans. SIAM Rev. 32(4), 599 (2000)CrossRefMATHGoogle Scholar
  2. 2.
    Keeling, M.J., Eames, K.T.: Social factors in epidemiology. J. R. Soc. Interface 2(4), 295 (2005)CrossRefGoogle Scholar
  3. 3.
    Holme, P., Saramäki, J.: Nosocomial infections. Phys. Rep. 519(3), 97 (2012)CrossRefGoogle Scholar
  4. 4.
    Holme, P.: The making of sixty nine days of close encounters at the science gallery. Eur. Phys. J. B 88, 234 (2015)CrossRefGoogle Scholar
  5. 5.
    Giesecke, J.: Modern Infectious Disease Epidemiology, 2nd edn. Arnold, London (2002)Google Scholar
  6. 6.
    Anderson, R.M., May, R.M.: Infectious Diseases in Humans. Oxford University Press, Oxford (1992)Google Scholar
  7. 7.
    Bauch, C.T., Galvani, A.P.: Compensating for population sampling in simulations of epidemic spread on temporal contact networks. Science 32, 47 (2013)CrossRefGoogle Scholar
  8. 8.
    Colizza, V., Barrat, A., Barthélemy, M., Vespignani, A.: Modern infectious disease epidemiology. BMC Med. 5(1), 34 (2007)CrossRefGoogle Scholar
  9. 9.
    Holme, P.: Data on face-to-face contacts in an office building suggest a low-cost vaccination strategy based on community linkers. Sci. Rep. 5, 14462 (2015)CrossRefGoogle Scholar
  10. 10.
    Dawson, P.M., Werkman, M., Brooks-Pollock, E., Tildesley, M.J.: The mathematics of infectious diseases. Proc. R. Soc. Lond. B Biol. Sci. 282(1808), 20150205 (2015)CrossRefGoogle Scholar
  11. 11.
    Génois, M., Vestergaard, C.L., Cattuto, C., Barrat, A.: Social organization patterns can lower disease risk without associated disease avoidance or immunity. Nat. Commun. 6, 8860 EP (2015)Google Scholar
  12. 12.
    Meyers, L.A., Pourbohloul, B., Newman, M., Skowronski, D.M., Brunham, R.C.: Network reachability of real-world contact sequences. J. Theor. Biol. 232, 7181 (2005)CrossRefGoogle Scholar
  13. 13.
    Rocha, L.E.C., Blondel, V.D.: Model versions and fast algorithms for network epidemiology. PLoS Comput. Biol. 9(3), e1002974 (2013)CrossRefGoogle Scholar
  14. 14.
    Rocha, L.E.C., Liljeros, F., Holme, P.: Information content of contact-pattern representations and predictability of epidemic outbreaks. PLoS Comput. Biol. 7(3), e1001109 (2011)CrossRefGoogle Scholar
  15. 15.
    Rocha, L.E.C., Liljeros, F., Holme, P.: Modern temporal network theory: a colloquium. Proc. Natl. Acad. Sci. USA 107, 5706 (2010)CrossRefGoogle Scholar
  16. 16.
    Isella, L., Stehlé, J., Barrat, A., Cattuto, C., Pinton, J.F., van den Broeck, W.: Temporal network structures controlling disease spreading. J. Theor. Biol. 271, 166 (2011)CrossRefGoogle Scholar
  17. 17.
    Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.F., Khanafer, N., Régis, C., Kim, B.A., Comte, B., Voirin, N.: Birth and death of links control disease spreading in empirical contact networks. PLoS One 8, e73970 (2013)CrossRefGoogle Scholar
  18. 18.
    Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.F., Quaggiotto, M., van den Broeck, W., Régis, C., Lina, B., Vanhems, P.: The basic reproduction number as a predictor for epidemic outbreaks in temporal networks. PLoS One 6, e23176 (2011)CrossRefGoogle Scholar
  19. 19.
    Van den Broeck, W., Quaggiotto, M., Isella, L., Barrat, A., Cattuto, C.: Temporal networks. Leonardo 45(3), 285 (2012)CrossRefGoogle Scholar
  20. 20.
    Génois, M., Vestergaard, C.L., Fournet, J., Panisson, A., Bonmarin, I., Barrat, A.: What’s in a crowd? Analysis of face-to-face behavioral networks. Netw. Sci. 3, 326 (2015)CrossRefGoogle Scholar
  21. 21.
    Lloyd, A.L.: Small but slow world: how network topology and burstiness slow down spreading. Theor. Popul. Biol. 60, 59 (2001)CrossRefGoogle Scholar
  22. 22.
    Holme, P.: J. Networks and epidemic models. Logist. Eng. Univ. 5, 51 (2014)Google Scholar
  23. 23.
    Holme, P.: Stretched exponential distributions in nature and economy: “fat tails” with characteristic scales. Phys. Rev. E 71(4), 046119 (2005)CrossRefGoogle Scholar
  24. 24.
    Karsai, M., Kivelä, M., Pan, R.K., Kaski, K., Kertész, J., Barabási, A.L., Saramäki, J.: Realistic distributions of infectious periods in epidemic models: changing patterns of persistence and dynamics. Phys. Rev. E 83(2), 025102R (2011)CrossRefGoogle Scholar
  25. 25.
    Breathnach, A.S.: Network theory and SARS: predicting outbreak diversity. Medicine 33(3), 22 (2005)CrossRefGoogle Scholar
  26. 26.
    Holme, P.: Bursts of vertex activation and epidemics in evolving networks. Phys. Rev. E 64, 022305 (2016)CrossRefGoogle Scholar
  27. 27.
    Laherrère, J., Information dynamics shape the sexual networks of internet-mediated prostitution. Sornette, D.: Eur. Phys. J. B 2(4), 525 (1998)Google Scholar
  28. 28.
    Holme, P., Masuda, N.: Simulated epidemics in an empirical spatiotemporal network of 50,185 sexual contacts. PLoS One 10(3), e0120567 (2015)CrossRefGoogle Scholar
  29. 29.
    Hock, K., Fefferman, N.H.: High-resolution measurements of face-to-face contact patterns in a primary school. Ecol. Complex. 12, 34 (2012)CrossRefGoogle Scholar
  30. 30.
    Holme, P., Liljeros, F.: Implementation of web-based respondent driven sampling among men who have sex with men in Sweden. Sci. Rep. 4, 4999 (2014)CrossRefGoogle Scholar
  31. 31.
    Valdano, E., Poletto, C., Giovannini, A., Palma, D., Savini, L., Colizza, V.: Predicting epidemic risk from past temporal contact data. PLoS Comput. Biol. 11(3), e1004152 (2015)CrossRefGoogle Scholar
  32. 32.
    Strömdahl, S., Lu, X., Bengtsson, L., Liljeros, F., Thorson, A.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PLoS One 10(10), e0138599 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Institute of Innovative ResearchTokyo Institute of TechnologyTokyoJapan
  2. 2.Department of Public Health SciencesKarolinska InstitutetStockholmSweden
  3. 3.Department of MathematicsUniversité de NamurNamurBelgium

Personalised recommendations