Skip to main content

Introduction to Temporal Network Epidemiology

Part of the Theoretical Biology book series (THBIO)

Abstract

In this introductory chapter, we start by briefly summarising temporal and adaptive networks, and epidemic process models frequently used in this volume. Then, we introduce a couple of what we think are key studies in the field, which are fundamental for various chapters in this volume. Finally, we give an overview of each chapter and discuss future work.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-10-5287-3_1
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-981-10-5287-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 1.1
Fig. 1.2

References

  1. Bansal, S., Read, J., Pourbohloul, B., Meyers, L.A.: The dynamic nature of contact networks in infectious disease epidemiology. J. Biol. Dyn. 4, 478–489 (2010)

    MathSciNet  CrossRef  MATH  Google Scholar 

  2. Barrat, A., Barthélemy, M., Vespignani, A.: Dynamical Processes on Complex Networks. Cambridge University Press, Cambridge, UK (2008)

    CrossRef  MATH  Google Scholar 

  3. Barthélemy, M., Barrat, A., Pastor-Satorras, R., Vespignani, A.: Velocity and hierarchical spread of epidemic outbreaks in scale-free networks. Phys. Rev. Lett. 92, 178701 (2004)

    CrossRef  Google Scholar 

  4. Colizza, V., Pastor-Satorras, R., Vespignani, A.: Reaction-diffusion processes and metapopulation models in heterogeneous networks. Nat. Phys. 3, 276–282 (2007)

    CrossRef  Google Scholar 

  5. Dietz, K.: On the transmission dynamics of HIV. Math. Biosci. 90, 397–414 (1988)

    MathSciNet  CrossRef  MATH  Google Scholar 

  6. Glass, R.J., Glass, L.M., Beyeler, W.E., Min, H.J.: Targeted social distancing designs for pandemic influenza. Emerg. Infect. Dis. 12, 1671–1681 (2006)

    CrossRef  Google Scholar 

  7. Gross, T., Blasius, B.: Adaptive coevolutionary networks: a review. J. R. Soc. Interface 5, 259–271 (2008)

    CrossRef  Google Scholar 

  8. Gross, T., D’Lima, C.J.D., Blasius, B.: Epidemic dynamics on an adaptive network. Phys. Rev. Lett. 96, 208701 (2006)

    CrossRef  Google Scholar 

  9. Gross, T., Sayama, H. (eds.): Adaptive Networks. Springer, Berlin (2009)

    MATH  Google Scholar 

  10. Hethcote, H.W.: The mathematics of infectious diseases. SIAM Rev. 42, 599–653 (2000)

    MathSciNet  CrossRef  MATH  Google Scholar 

  11. Holme, P.: Model versions and fast algorithms for network epidemiology. J. Logist. Eng. Univ. 30, 1–7 (2014)

    Google Scholar 

  12. Holme, P.: Modern temporal network theory: a colloquium. Eur. Phys. J. B 88, 234 (2015)

    CrossRef  Google Scholar 

  13. Holme, P., Liljeros, F.: Birth and death of links control disease spreading in empirical contact networks. Sci. Rep. 4, 4999 (2014)

    CrossRef  Google Scholar 

  14. Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519, 97–125 (2012)

    CrossRef  Google Scholar 

  15. Holme, P., Saramäki, J.: Temporal Networks. Springer, Berlin (2013)

    CrossRef  Google Scholar 

  16. Karsai, M., Kivelä, M., Pan, R.K., Kaski, K., Kertész, J., Barabási, A.L., Saramäki, J.: Small but slow world: how network topology and burstiness slow down spreading. Phys. Rev. E 83, 025102(R) (2011)

    Google Scholar 

  17. Keeling, M.J., Eames, K.T.D.: Networks and epidemic models. J. R. Soc. Interface 2, 295–307 (2005)

    CrossRef  Google Scholar 

  18. Kelso, J.K., Milne, G.J., Kelly, H.: Simulation suggests that rapid activation of social distancing can arrest epidemic development due to a novel strain of influenza. BMC Public Health 9, 117 (2009)

    CrossRef  Google Scholar 

  19. Kretzschmar, M., Morris, M.: Measures of concurrency in networks and the spread of infectious disease. Math. Biosci. 133, 165–195 (1996)

    CrossRef  MATH  Google Scholar 

  20. Lloyd, A.L.: Realistic distributions of infectious periods in epidemic models: changing patterns of persistence and dynamics. Theor. Pop. Biol. 60, 59–71 (2001)

    CrossRef  Google Scholar 

  21. Masuda, N., Holme, P.: Predicting and controlling infectious disease epidemics using temporal networks. F1000Prime Rep. 5, 6 (2013)

    Google Scholar 

  22. Masuda, N., Lambiotte, R.: A Guide to Temporal Networks. World Scientific, Singapore (2016)

    CrossRef  MATH  Google Scholar 

  23. Newman, M.E.J.: Networks–An Introduction. Oxford University Press, Oxford (2010)

    CrossRef  MATH  Google Scholar 

  24. Pastor-Satorras, R., Castellano, C., Van Mieghem, P., Vespignani, A.: Epidemic processes in complex networks. Rev. Mod. Phys. 87, 925–979 (2015)

    MathSciNet  CrossRef  Google Scholar 

  25. Reluga, T.C.: Game theory of social distancing in response to an epidemic. PLoS Comput. Biol. 6, e1000793 (2010)

    MathSciNet  CrossRef  Google Scholar 

  26. Rocha, L.E.C., Liljeros, F., Holme, P.: Simulated epidemics in an empirical spatiotemporal network of 50,185 sexual contacts. PLoS Comput. Biol. 7, e1001109 (2011)

    CrossRef  Google Scholar 

  27. Rocha, L.E.C., Masuda, N.: Individual-based approach to epidemic processes on arbitrary dynamic contact networks. Sci. Rep. 6, 31456 (2016)

    CrossRef  Google Scholar 

  28. Sayama, H., Pestov, I., Schmidt, J., Bush, B.J., Wong, C., Yamanoi, J., Gross, T.: Modeling complex systems with adaptive networks. Comput. Math. Appl. 65, 1645–1664 (2013)

    MathSciNet  CrossRef  MATH  Google Scholar 

  29. Sharp, P.M., Hahn, B.H.: Origins of HIV and the AIDS pandemic. Cold Spring Harb. Perspect. Med. 1, a006841 (2011)

    CrossRef  Google Scholar 

  30. Starnini, M., Baronchelli, A., Pastor-Satorras, R.: Modeling human dynamics of face-to-face interaction networks. Phys. Rev. Lett. 110, 168701 (2013)

    CrossRef  Google Scholar 

  31. Valdano, E., Ferreri, L., Poletto, C., Colizza, V.: Analytical computation of the epidemic threshold on temporal networks. Phys. Rev. X 5, 021005 (2015)

    Google Scholar 

  32. Vestergaard, C.L., Génois, M.: Temporal Gillespie algorithm: fast simulation of contagion processes on time-varying networks. PLoS Comput. Biol. 11, e1004579 (2015)

    CrossRef  Google Scholar 

  33. Volz, E., Meyers, L.A.: Susceptible-infected-recovered epidemics in dynamic contact networks. Proc. R. Soc. B 274, 2925–2933 (2007)

    CrossRef  Google Scholar 

  34. Volz, E., Meyers, L.A.: Epidemic thresholds in dynamic contact networks. J. R. Soc. Interface 6, 233–241 (2009)

    CrossRef  Google Scholar 

  35. Watts, C.H., May, R.M.: The influence of concurrent partnerships on the dynamics of HIV/AIDS. Math. Biosci. 108, 89–104 (1992)

    CrossRef  MATH  Google Scholar 

Download references

Acknowledgements

NM acknowledges the support provided through JST, ERATO, Kawarabayashi Large Graph Project and JST, CREST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoki Masuda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Masuda, N., Holme, P. (2017). Introduction to Temporal Network Epidemiology. In: Masuda, N., Holme, P. (eds) Temporal Network Epidemiology. Theoretical Biology. Springer, Singapore. https://doi.org/10.1007/978-981-10-5287-3_1

Download citation