Skip to main content

Optimal Containment of Epidemics in Temporal and Adaptive Networks

Part of the Theoretical Biology book series (THBIO)

Abstract

In this chapter, we focus on the problem of containing the spread of diseases taking place on both temporal and adaptive networks (i.e., networks whose structure changes as a result of the epidemic). We specifically focus on the problem of finding the optimal allocation of containment resources (e.g., vaccines, medical personnel, traffic control resources, etc.) to eradicate epidemic outbreaks over the following three models of temporal and adaptive networks: (i) Markovian temporal networks, (ii) aggregated-Markovian temporal networks, and (iii) stochastically adaptive network models. For each model, we present a rigorous and tractable mathematical framework to efficiently find the optimal distribution of control resources to eliminate the disease. In contrast with other existing results, our results are not based on heuristic control strategies, but on a disciplined analysis using tools from dynamical systems and convex optimization.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-10-5287-3_11
  • Chapter length: 26 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-981-10-5287-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 11.1
Fig. 11.2
Fig. 11.3
Fig. 11.4
Fig. 11.5
Fig. 11.6
Fig. 11.7
Fig. 11.8
Fig. 11.9
Fig. 11.10

References

  1. Ahn, H.J., Hassibi, B.: Global dynamics of epidemic spread over complex networks. In: 52nd IEEE Conference on Decision and Control, pp. 4579–4585 (2013)

    Google Scholar 

  2. Antoniades, D., Dovrolis, C.: Co-evolutionary dynamics in social networks: a case study of Twitter. Comput. Soc. Netw. 2, 14 (2015)

    CrossRef  Google Scholar 

  3. Barrat, A., Barthelemy, M., Vespignani, A.: Dynamical Processes on Complex Networks. Cambridge University Press, Cambridge (2008)

    CrossRef  MATH  Google Scholar 

  4. Bell, D., Nicoll, A., Fukuda, K., Horby, P., Monto, A., Hayden, F., Wylks, C., Sanders, L., Van Tam, J.: Nonpharmaceutical interventions for pandemic influenza, national and community measures. Emerg. Infect. Dis. 12(1), 88–94 (2006)

    Google Scholar 

  5. Borgs, C., Chayes, J., Ganesh, A., Saberi, A.: How to distribute antidote to control epidemics. Random Struct. Algoritm. 37(2), 204–222 (2010)

    MathSciNet  MATH  Google Scholar 

  6. Boyd, S., Kim, S.J., Vandenberghe, L., Hassibi, A.: A tutorial on geometric programming. Optim. Eng. 8(1), 67–127 (2007)

    MathSciNet  CrossRef  MATH  Google Scholar 

  7. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, New York (2004)

    CrossRef  MATH  Google Scholar 

  8. Brewer, J.: Kronecker products and matrix calculus in system theory. IEEE Trans. Circuits Syst. 25(9), 772–781 (1978)

    MathSciNet  CrossRef  MATH  Google Scholar 

  9. Cattuto, C., van den Broeck, W., Barrat, A., Colizza, V., Pinton, J.F., Vespignani, A.: Dynamics of person-to-person interactions from distributed RFID sensor networks. PLoS One 5(7), 1–9 (2010)

    CrossRef  Google Scholar 

  10. Chen, X., Preciado, V.M.: Optimal coinfection control of competitive epidemics in multi-layer networks. In: 53rd IEEE Conference on Decision and Control, pp. 6209–6214 (2014)

    Google Scholar 

  11. Chung, F., Horn, P., Tsiatas, A.: Distributing antidote using pagerank vectors. Internet Math. 6(2), 237–254 (2009)

    MathSciNet  CrossRef  MATH  Google Scholar 

  12. Clementi, A.E., Macci, C., Monti, A., Pasquale, F., Silvestri, R.: Flooding time in edge-Markovian dynamic graphs. In: 27th ACM Symposium on Principles of Distributed Computing, pp. 213–222 (2008)

    Google Scholar 

  13. Cohen, R., Havlin, S., Ben-Avraham, D.: Efficient immunization strategies for computer networks and populations. Phys. Rev. Lett. 91, 247901 (2003)

    CrossRef  Google Scholar 

  14. Drakopoulos, K., Ozdaglar, A., Tsitsiklis, J.N.: An efficient curing policy for epidemics on graphs. IEEE Trans. Netw. Sci. Eng. 1(2), 67–75 (2014)

    MathSciNet  CrossRef  Google Scholar 

  15. Feller, W.: An Introduction to Probability Theory and Its Applications. John Wiley & Sons, New York (1956)

    Google Scholar 

  16. Funk, S., Salathé, M., Jansen, V.A.A.: Modelling the influence of human behaviour on the spread of infectious diseases: a review. J. R. Soc. Interface 7, 1247–1256 (2010)

    CrossRef  Google Scholar 

  17. Gross, T., Blasius, B.: Adaptive coevolutionary networks: a review. J. R. Soc. Interface 5, 259–271 (2008)

    CrossRef  Google Scholar 

  18. Guo, D., Trajanovski, S., van de Bovenkamp, R., Wang, H., Van Mieghem, P.: Epidemic threshold and topological structure of susceptible-infectious-susceptible epidemics in adaptive networks. Phys. Rev. E 88, 042802 (2013)

    CrossRef  Google Scholar 

  19. Hanson, F.B.: Applied Stochastic Processes and Control for Jump-Diffusions: Modeling, Analysis and Computation. Society for Industrial and Applied Mathematics, Philadelphia (2007)

    CrossRef  MATH  Google Scholar 

  20. Holme, P.: Modern temporal network theory: a colloquium. Eur. Phys. J. B 88, 234 (2015)

    CrossRef  Google Scholar 

  21. Holme, P., Liljeros, F.: Birth and death of links control disease spreading in empirical contact networks. Sci. Rep. 4, 4999 (2014)

    CrossRef  Google Scholar 

  22. Horn, R., Johnson, C.: Matrix Analysis. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  23. Karsai, M., Kivelä, M., Pan, R.K., Kaski, K., Kertész, J., Barabasi, A.L., Saramäki, J.: Small but slow world: how network topology and burstiness slow down spreading. Phys. Rev. E 83, 025102 (2011)

    CrossRef  Google Scholar 

  24. Karsai, M., Perra, N., Vespignani, A.: Time varying networks and the weakness of strong ties. Sci. Rep. 4, 4001 (2014)

    CrossRef  Google Scholar 

  25. Khanafer, A., Basar, T.: An optimal control problem over infected networks. In: 1st International Conference on Control, Dynamic Systems, and Robotics, 125 (2014)

    Google Scholar 

  26. Khouzani, M. H. R., Sarkar, S., Altman, E.: Optimal control of epidemic evolution. In: 2011 IEEE International Conference on Computer Communications, pp. 1683–1691 (2011)

    Google Scholar 

  27. Lajmanovich, A., Yorke, J.A.: A deterministic model for gonorrhea in a nonhomogeneous population. Math. Biosci. 28(1976), 221–236 (1976)

    MathSciNet  CrossRef  MATH  Google Scholar 

  28. Liu, S., Perra, N., Karsai, M., Vespignani, A.: Controlling contagion processes in activity driven networks. Phys. Rev. Lett. 112, 118702 (2014)

    CrossRef  Google Scholar 

  29. Masuda, N., Holme, P.: Predicting and controlling infectious disease epidemics using temporal networks. F1000prime Rep. 5, 6 (2013)

    Google Scholar 

  30. Masuda, N., Klemm, K., Eguíluz, V.M.: Temporal networks: slowing down diffusion by long lasting interactions. Phys. Rev. Lett. 111, 188701 (2013)

    CrossRef  Google Scholar 

  31. Newman, M., Barabási, A.L., Watts, D.J.: The Structure and Dynamics of Networks. Princeton University Press, Princeton (2006)

    MATH  Google Scholar 

  32. Nowzari, C., Ogura, M., Preciado, V.M., Pappas, G.J.: A general class of spreading processes with non-Markovian dynamics. In: 54th IEEE Conference on Decision and Control, pp. 5073–5078 (2015)

    Google Scholar 

  33. Nowzari, C., Ogura, M., Preciado, V.M., Pappas, G.J.: Optimal resource allocation for containing epidemics on time-varying networks. In: 49th Asilomar Conference on Signals, Systems and Computers, pp. 1333–1337 (2015)

    Google Scholar 

  34. Nowzari, C., Preciado, V.M., Pappas, G.J.: Analysis and control of epidemics: a survey of spreading processes on complex networks. IEEE Control Syst. 36(1), 26–46 (2016)

    MathSciNet  CrossRef  Google Scholar 

  35. Nowzari, C., Preciado, V.M., Pappas, G.J.: Stability analysis of generalized epidemic models over directed networks. In: 53rd IEEE Conference on Decision and Control, pp. 6197–6202 (2014)

    Google Scholar 

  36. Ogura, M., Martin, C.F.: Stability analysis of positive semi-Markovian jump linear systems with state resets. SIAM J. Control. Optim. 52, 1809–1831 (2014)

    MathSciNet  CrossRef  MATH  Google Scholar 

  37. Ogura, M., Preciado, V.M.: Optimal design of switched networks of positive linear systems via geometric programming. IEEE Trans. Control Netw. Syst. (accepted) (2015)

    Google Scholar 

  38. Ogura, M., Preciado, V.M.: Efficient containment of exact SIR Markovian processes on networks. In: 55th IEEE Conference on Decision and Control, pp. 967–972 (2016)

    Google Scholar 

  39. Ogura, M., Preciado, V.M.: Epidemic processes over adaptive state-dependent networks. Phys. Rev. E 93, 062316 (2016)

    CrossRef  Google Scholar 

  40. Ogura, M., Preciado, V.M.: Optimal design of networks of positive linear systems under stochastic uncertainty. In: 2016 American Control Conference, pp. 2930–2935 (2016)

    Google Scholar 

  41. Ogura, M., Preciado, V.M.: Stability of spreading processes over time-varying large-scale networks. IEEE Trans. Netw. Sci. Eng. 3(1), 44–57 (2016)

    MathSciNet  CrossRef  Google Scholar 

  42. Pastor-Satorras, R., Castellano, C., Van Mieghem, P., Vespignani, A.: Epidemic processes in complex networks. Rev. Mod. Phys. 87(3), 925–979 (2015)

    MathSciNet  CrossRef  Google Scholar 

  43. Perra, N., Gonçalves, B., Pastor-Satorras, R., Vespignani, A.: Activity driven modeling of time varying networks. Sci. Rep. 2, 469 (2012)

    CrossRef  Google Scholar 

  44. Preciado, V.M., Zargham, M., Enyioha, C., Jadbabaie, A., Pappas, G.J.: Optimal vaccine allocation to control epidemic outbreaks in arbitrary networks. In: 52nd IEEE Conference on Decision and Control, pp. 7486–7491 (2013)

    Google Scholar 

  45. Preciado, V.M., Sahneh, F.D., Scoglio, C.: A convex framework for optimal investment on disease awareness in social networks. In: 2013 Global Conference on Signal and Information Processing, pp. 851–854 (2013)

    Google Scholar 

  46. Preciado, V.M., Jadbabaie, A.: Spectral analysis of virus spreading in random geometric networks. In: 48th IEEE Conference on Decision and Control, pp. 4802–4807 (2009)

    Google Scholar 

  47. Preciado, V.M., Zargham, M., Enyioha, C., Jadbabaie, A., Pappas, G.J.: Optimal resource allocation for network protection against spreading processes. IEEE Trans. Control Netw. Syst. 1(1), 99–108 (2014)

    MathSciNet  CrossRef  MATH  Google Scholar 

  48. Ramirez-Llanos, E., Martinez, S.: Distributed and robust fair resource allocation applied to virus spread minimization. In: 2015 American Control Conference, pp. 1065–1070 (2015)

    Google Scholar 

  49. Rocha, L.E.C., Blondel, V.D.: Bursts of vertex activation and epidemics in evolving networks. PLoS Comput. Biol. 9(3), e1002974 (2013)

    MathSciNet  CrossRef  Google Scholar 

  50. Rogers, T., Clifford-Brown, W., Mills, C., Galla, T.: Stochastic oscillations of adaptive networks: application to epidemic modelling. J. Stat. Mech: Theory Exp. 2012(08), P08018 (2012)

    CrossRef  Google Scholar 

  51. Schaper, W., Scholz, D.: Factors regulating arteriogenesis. Arterioscler. Thromb. Vasc. Biol. 23(7), 1143–1151 (2003)

    CrossRef  Google Scholar 

  52. Schwarzkopf, Y., Rákos, A., Mukamel, D.: Epidemic spreading in evolving networks. Phys. Rev. E 82, 036112 (2010)

    MathSciNet  CrossRef  Google Scholar 

  53. Scirè, A., Tuval, I., Eguíluz, V.M.: Dynamic modeling of the electric transportation network. Europhys. Lett. 71(2), 318–324 (2005)

    CrossRef  Google Scholar 

  54. Sélley, F., Besenyei, Á., Kiss, I.Z., Simon, P.L.: Dynamic control of modern, network-based epidemic models. SIAM J. Appl. Dyn. Syst. 14(1), 168–187 (2015)

    MathSciNet  CrossRef  MATH  Google Scholar 

  55. Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.F., Quaggiotto, M., van den Broeck, W., Régis, C., Lina, B., Vanhems, P.: High-resolution measurements of face-to-face contact patterns in a primary school. PLoS One 6(8), e23176 (2011)

    CrossRef  Google Scholar 

  56. Szabó-Solticzky, A., Berthouze, L., Kiss, I.Z., Simon, P.L.: Oscillating epidemics in a dynamic network model: stochastic and mean-field analysis. J. Math. Biol. 72(5), 1153–1176 (2016)

    MathSciNet  CrossRef  MATH  Google Scholar 

  57. Taylor, M., Taylor, T.J., Kiss, I.Z.: Epidemic threshold and control in a dynamic network. Phys. Rev. E 85, 016103 (2012)

    CrossRef  Google Scholar 

  58. Torres, J.A., Roy, S., Wan, Y.: Sparse allocation of resources in dynamical networks with application to spread control. In: 2015 American Control Conference, pp. 1873–1878 (2015)

    Google Scholar 

  59. Trajanovski, S., Hayel, Y., Altman, E., Wang, H., Van Mieghem, P.: Decentralized protection strategies against SIS epidemics in networks. IEEE Trans. Control Netw. Syst. 2(4), 406–419 (2015)

    MathSciNet  CrossRef  MATH  Google Scholar 

  60. Tunc, I., Shaw, L.B.: Effects of community structure on epidemic spread in an adaptive network. Phys. Rev. E 90, 022801 (2014)

    CrossRef  Google Scholar 

  61. Valdez, L.D., Macri, P.A., Braunstein, L.A.: Intermittent social distancing strategy for epidemic control. Phys. Rev. E 85, 036108 (2012)

    CrossRef  Google Scholar 

  62. Van Mieghem, P., Omic, J., Kooij, R.: Virus spread in networks. IEEE/ACM Trans. Netw. 17(1), 1–14 (2009)

    CrossRef  Google Scholar 

  63. Vazquez, A., Rácz, B., Lukács, A., Barabasi, A.L.: Impact of non-Poissonian activity patterns on spreading processes. Phys. Rev. Lett. 98, 158702 (2007)

    CrossRef  Google Scholar 

  64. Vestergaard, C.L., Génois, M., Barrat, A.: How memory generates heterogeneous dynamics in temporal networks. Phys. Rev. E 90, 042805 (2014)

    CrossRef  Google Scholar 

  65. Volz, E., Meyers, L.A.: Epidemic thresholds in dynamic contact networks. J. R. Soc. Interface 6(32), 233–241 (2009)

    CrossRef  Google Scholar 

  66. Von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007)

    MathSciNet  CrossRef  Google Scholar 

  67. Wan, Y., Roy, S., Saberi, A.: Designing spatially heterogeneous strategies for control of virus spread. IET Syst. Biol. 2(4), 184–201 (2008)

    CrossRef  Google Scholar 

  68. Wang, B., Cao, L., Suzuki, H., Aihara, K.: Epidemic spread in adaptive networks with multitype agents. J. Phys. A Math. Theor. 44(3), 035101 (2011)

    MathSciNet  CrossRef  MATH  Google Scholar 

  69. Watkins, N.J., Nowzari, C., Preciado, V.M., Pappas, G.J.: Optimal resource allocation for competitive spreading processes on bilayer networks. IEEE Trans. Control Netw. Syst. (accepted) (2016)

    Google Scholar 

  70. Watkins, N.J., Nowzari, C., Preciado, V.M., Pappas, G.J.: Optimal resource allocation for competing epidemics over arbitrary networks. In: 2015 American Control Conference, pp. 1381–1386 (2015)

    Google Scholar 

  71. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)

    CrossRef  MATH  Google Scholar 

  72. Zachary, W.W.: An information flow model for conflict and fission in small groups. J. Anthropol. Res. 33(4), 452–473 (1977)

    Google Scholar 

Download references

Acknowledgements

This work has been supported in part by the National Science Foundation under grants IIS-1447470 and ECCS-1651433.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Ogura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Ogura, M., Preciado, V.M. (2017). Optimal Containment of Epidemics in Temporal and Adaptive Networks. In: Masuda, N., Holme, P. (eds) Temporal Network Epidemiology. Theoretical Biology. Springer, Singapore. https://doi.org/10.1007/978-981-10-5287-3_11

Download citation