Skip to main content

Burkholderia to Paraburkholderia: The Journey of a Plant-Beneficial-Environmental Bacterium

  • Chapter
  • First Online:

Abstract

The genus Burkholderia is a versatile member of class Proteobacteria with over a hundred validly described species. Though endowed with a vast ecological diversity and metabolic versatility, the agro-biotechnological use of members of this genus has remained highly restricted over the past few decades owing to the pathogenic nature of nearly twenty species classified as the Burkholderia cepacia complex (Bcc), B. pseudomallei the causative agent of melioidosis, B. mallei the causative agent of glanders disease in equines and a few plant pathogenic species. Despite the presence of several environmental isolates with beneficial traits, they were overshadowed by their pathogenic relatives. Though initial attempts were made to segregate the clinical and environmental isolates based on the 16S rRNA gene sequences and multilocus sequence typing (MLST), they have failed to remove the stigma associated with the genus. In order to enable the utilization of this genus in agro-biotechnological applications, attempts were made to bifurcate the genus based on phylogenetic evidence. While an earlier attempt to this effect was unsuccessful, the attempt in describing the novel genus Paraburkholderia based on the presence of conserved sequence indels and its subsequent taxonomical validation have opened up the possibilities of utilizing this genus that largely remains untainted by any pathogenic potential. But the widespread use of members of this novel genus has to follow a cautious path in order to eliminate any possibility of mammalian pathogenicity and the possible transfer of virulence genes from the members of genus Burkholderia. If such concerted steps are taken up, we shall be adding one more potential genus for agro-biotechnological applications.

This is a preview of subscription content, log in via an institution.

References

  • Achouak W, Christen R, Barakat M et al (1999) Burkholderia caribensis sp.nov. an exopolysaccharide-producing bacterium isolated from vertisol micro aggregates in Martinique. Intl J Sys Evol Microbiol 49:787–794

    CAS  Google Scholar 

  • Aizawa T, Ve NB, Nakajima M et al (2010a) Burkholderia heleia sp.nov. a nitrogen-fixing bacterium isolated from an aquatic plant, Eleocharis dulcis, that grows in highly acidic swamps in actual acid sulphate soil areas of Vietnam. Intl J Sys Evol Microbiol 60:1152–1157

    Article  CAS  Google Scholar 

  • Aizawa T, Ve NB, Vijarnsorn P et al (2010b) Burkholderia acidipaludis sp.nov. aluminium-tolerant bacteria isolated from Chinese water chestnut (Eleocharis dulcis) growing in highly acidic swamps in South-East Asia. Intl J Sys Evol Microbiol 60:2036–2041

    Article  CAS  Google Scholar 

  • Aizawa T, Vijarnsorn P, Nakajima M, Sunairi M (2011) Burkholderia bannensis sp. nov., an acidneutralizing bacterium isolated from torpedo grass (Panicum repens) growing in highly acidic swamps. Int J Syst Evol Microbiol 61(7):1645–1650

    Article  CAS  Google Scholar 

  • Anandham R, Gandhi PI, Kwon SW et al (2009) Mixotrophic metabolism in Burkholderia kururiensis subsp. thiooxidans subsp. nov., a facultative chemolithoautotrophic thiosulfate oxidizing bacterium isolated from rhizosphere soil and proposal for classification of the type strain of Burkholderia kururiensis as Burkholderia kururiensis subsp. kururiensis subsp. nov. arch. Microbiol 191(12):885–894

    CAS  Google Scholar 

  • Angus AA, Agapakis CM, Fong S et al (2014) Plant associated symbiotic Burkholderia species lack hallmark strategies required in mammalian pathogenesis. PLoS One 9(1):e83779

    Article  Google Scholar 

  • Baldani J, Caruso L, Baldani VL et al (1997) Recent advances in BNF with non-legume plants. Soil Biol Biochem 29(5):911–922

    Article  CAS  Google Scholar 

  • Banik A et al (2016) Characterization of N -fixing plant growth promoting endophytic and epiphytic bacterial community of Indian cultivated and wild rice (Oryza spp.) genotypes. Planta 243(3):799–812

    Article  CAS  Google Scholar 

  • Barriuso J, Ramos Solano B, Fray RG et al (2008) Transgenic tomato plants alter quorum sensing in plant growth promoting rhizobacteria. Plant Biotech J 6(5):442–452

    Article  CAS  Google Scholar 

  • Bopp LH (1986) Degradation of highly chlorinated PCBs by Pseudomonas strain LB400. J Ind Microbiol Biotechnol 1:23–29

    CAS  Google Scholar 

  • Brämer CO, Vandamme P, da Silva LF et al (2001) Polyhydroxyalkanoate-accumulating bacterium isolated from soil of a sugarcane plantation in Brazil. Intl J Sys Evol Microbiol 51(5):1709–1713

    Article  Google Scholar 

  • Burkholder WH (1942) Three bacterial plant pathogens:Phytomonas caryophylli, sp.nov. Phytomonas alliicola sp.nov. and Phytomonas manihotis (Artaud-Berthet et Bondar) Viegas. Phytopathology 32:141–149

    Google Scholar 

  • Caballero-Mellado J, Martínez-Aguilar L, Paredes-Valdez G et al (2004) Burkholderia unamae sp. nov., an N – fixing rhizospheric and endophytic species. Int J Syst Evol Microbiol 54:1165–1172

    Article  CAS  Google Scholar 

  • Caballero-Mellado J, Onofre-Lemus J, Estrada-de los Santos P et al (2007) The tomato rhizosphere, an environment rich in nitrogen-fixing Burkholderia species with capabilities of interest for agriculture and bioremediation. Appl Environ Microbiol 73(16):5308–5319

    Article  CAS  Google Scholar 

  • Carrell AA, Frank AC (2015) Bacterial endophyte communities in the foliage of coast redwood and giant sequoia. Frontiers Microbiol 6:1008

    Article  Google Scholar 

  • Chain PS, Denef VJ, Konstantinidis KT et al (2006) Burkholderia xenovorans LB400 harbours multireplicon, 9.73-Mbp genome shaped for versatility. Proc Natl Acad Sci U.S.A 103:15280–15287

    Article  Google Scholar 

  • Chen WM, James EK, Coenye T et al (2006) Burkholderia mimosarum sp.nov. isolated from root nodules of Mimosa spp. from Taiwan and South America. Intl J Sys Evol Microbiol 56:1847–1851

    Article  CAS  Google Scholar 

  • Chen WM, De Faria SM, James EK et al (2007) Burkholderia nodosa sp.nov. isolated from root nodules of the woody Brazilian legumes Mimosa bimucronata and Mimosas cabrella. Intl J Sys Evol Microbiol 57:1055–1059

    Article  CAS  Google Scholar 

  • Chen WM, de Faria SM, Chou JH et al (2008) Burkholderia sabiae sp. nov., isolated from root nodules of Mimosa caesalpiniifolia. Intl J Sys Evol Microbiol 58:2174–2179

    Article  CAS  Google Scholar 

  • Cheng AC, Currie BJ (2005) Melioidosis: epidemiology, pathophysiology, and management. Clin Microbiol Rev 18(2):383–416

    Article  CAS  Google Scholar 

  • Coenye T (2010) Social interactions in the Burkholderia cepacia complex: biofilms and quorum sensing. Future Microbiol 5(7):1087–1099

    Article  CAS  Google Scholar 

  • Coenye T, Laevens S, Willems A et al (2001) Burkholderia fungorum sp. nov. and Burkholderia caledonica sp. nov., two new species isolated from the environment, animals and human clinical samples. Intl J Sys Evol Microbiol 51:1099–1107

    Article  CAS  Google Scholar 

  • Coenye T, Henry D, Speert DP et al (2004) Burkholderia phenoliruptrix sp. nov. to accommodate the 2,4,5-trichlorophenoxyacetic acid and halophenol-degrading strain AC1100. Syst Appl Microbiol 27:623–627

    Article  CAS  Google Scholar 

  • da Silva DA, Cotta SR, Vollú RE (2014) Endophytic microbial community in two transgenic maize genotypes and in their near-isogenic non-transgenic maize genotype. BMC Microbiol 14(1):1

    Article  Google Scholar 

  • Dobritsa AP, Samadpour M (2016) Transfer of eleven Burkholderia species to the genus Paraburkholderia and proposal of Caballeronia gen. nov., a new genus to accommodate twelve species of Burkholderia and Paraburkholderia. Intl J sys Evol Microbiol 66(8):2836–2846

    Article  CAS  Google Scholar 

  • Eberl L, Vandamme P (2016) Members of the genus Burkholderia: good and bad guys. F1000Research 5. doi:10.12688/f1000research.8221.1

    Article  Google Scholar 

  • Estrada-de los Santos P et al (2001) Burkholderia, a genus rich in plant-associated nitrogen fixers with wide environmental and geographic distribution. Appl Environ Microbiol 67(6):2790–2798

    Article  CAS  Google Scholar 

  • Estrada-de los Santos P, Vinuesa P, Martínez-Aguilar L et al (2013) Phylogenetic analysis of Burkholderia species by multilocus sequence analysis. Curr Microbiol 67:51–60

    Article  CAS  Google Scholar 

  • Estrada-De Los Santos P, Rojas-Rojas FU, Tapia-García EY (2016) To split or not to split: an opinion on dividing the genus Burkholderia. Ann Microbial 66:1303–1314

    Article  CAS  Google Scholar 

  • Frommel MI et al (1991) Growth enhancement and developmental modifications of in vitro grown potato (Solanum tuberosum spp. tuberosum) as affected by a non fluorescent Pseudomonas sp.Plant. Physiol 96:928–936

    CAS  Google Scholar 

  • Gao B, Gupta RS (2012) Microbial systematics in the post-genomics era. Antonie Van Leeuwenhoek 101:45–54

    Article  Google Scholar 

  • Gilad J, Harary I, Dushnitsky T et al (2007) Burkholderia mallei and Burkholderia pseudomallei as bioterrorism agents: national aspects of emergency preparedness. Isr Med Assoc J 9(7):499

    PubMed  Google Scholar 

  • Gillis M, Van Van T, Bardin R et al (1995) Polyphasic taxonomy in the genus Burkholderia leading to an emended description of the genus and proposition of Burkholderia vietnamiensis sp. nov. for N -fixing isolates from rice in Vietnam. Intl J Sys Evol Microbiol 45(2):274–289

    CAS  Google Scholar 

  • Gogarten JP et al (2002) Prokaryotic evolution in light of gene transfer. Mol Biol Evol 19:2226–2238

    Article  CAS  Google Scholar 

  • Goris J, Dejonghe W, Falsen E et al (2004) Classification of the biphenyl and polychlorinated biphenyl-degrading strain LB400T and relatives as Burkholderia xenovorans sp.nov. Intl J Sys Evol Microbiol 54:1677–1681

    Article  CAS  Google Scholar 

  • Gupta RS (1998) Protein phylogenies and signature sequences: are appraisal of evolutionary relationships among archae bacteria,eubacteria,and eukaryotes. Microbiol Mol Biol Rev 62:1435

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta RS, Griffiths E (2002) Critical issues in bacterial phylogeny. Theor Popul Biol 61:423–434

    Article  Google Scholar 

  • Gyaneshwar P, Hirsch AM, Moulin L, Chen WM, Elliott GN, Bontemps C, Estrada-de Los Santos P, Gross E, Dos Reis FB et al (2011) Legume-nodulating beta Proteobacteria: diversity, host range, and future prospects. Mol Plant Microbe Interact 24:1276–1288

    Article  CAS  Google Scholar 

  • Ho YN, Huang CC (2015) Draft genome sequence of Burkholderia cenocepacia strain 869T2, a plant-beneficial endophytic bacterium. Genome Announc 3(6):e01327–e01315

    Article  Google Scholar 

  • Hussain S, Arshad M, Saleem M et al (2007) Biodegradation of α-and β-endosulfan by soil bacteria. Biodegradation 8(6):731–740

    Article  Google Scholar 

  • Isles A, Maclusky I, Corey M et al (1984) Pseudomonas cepacia infection in cystic fibrosis: an emerging problem. J Pediatr 104(2):206–210

    Article  CAS  Google Scholar 

  • Izumi H, Cairney JW, Killham K et al (2010) Bacteria associated with ectomycorrhizas of slash pine (Pinus elliotti) in south-eastern Queensland, Australia. FEMS Microbiol Lett 282:196–204

    Article  Google Scholar 

  • Jaeger K, Dijkstra B, Reetz M (1999) Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annu Rev Microbiol 53:315–351

    Article  CAS  Google Scholar 

  • Kaur C et al (2016) Draft genome sequence of phosphate-solubilizing bacterium Paraburkholderia tropica strain P-31 isolated from pomegranate (Punica granatum) rhizosphere. Genome Announc 4(4):e00844–e00816

    Article  Google Scholar 

  • Kellogg ST et al (1981) Plasmid assisted molecular breeding: new technique for enhanced biodegradation of persistent toxic chemicals. Science 214:1133–1135

    Article  CAS  Google Scholar 

  • Kilbane JJ, Chatterjee DK, Karns JS et al (1982) Biodegradation of 2,4,5-trichlorophenoxyacetic acid by a pure culture of Pseudomonas cepacia. Appl Environ Microbiol 44:72–78

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim H et al (2006) Burkholderia ginsengisoli sp.nov. a β-glucosidase-producing bacterium isolated from soil of a ginseng field. Intl J Sys Evol Microbiol 56:2529–2533

    Article  CAS  Google Scholar 

  • Li X, Prescott M, Adler B et al (2013) Beclin 1 is required for starvation-enhanced, but not rapamycin-enhanced, LC3-associated phagocytosis of Burkholderia pseudomallei in RAW 264.7 cells. Infect Immun 81(1):271–277

    Article  CAS  Google Scholar 

  • Lim HB, Park MJ, Yang HC et al (2008) Burkholderia sediminicola sp.nov., isolated from fresh water sediment. Intl J Sys Evol Microbiol 58:565–569

    Article  CAS  Google Scholar 

  • Limmathurotsakul D, Peacock SJ (2011) Melioidosis: a clinical overview. Br Med Bull 99(1):125–139

    Article  Google Scholar 

  • Liu Y, Chen D, Yan Y et al (2011) Biodiesel synthesis and conformation of lipase from Burkholderia cepacia in room temperature ionic liquids and organic solvents. Bioresour Technol 102(22):10414–10418

    Article  CAS  Google Scholar 

  • Mahenthiralingam E et al (2005) The multifarious, multireplicon Burkholderia cepacia complex. Nature Rev Microbiol 3:144–156

    Article  CAS  Google Scholar 

  • Mahenthiralingam E et al (2008) Burkholderia cepacia complex bacteria: opportunistic pathogens with important natural biology. J Appl Microbiol 104(6):1539–1551

    Article  CAS  Google Scholar 

  • Martínez-Aguilar L, Díaz R, Peña-Cabriales JJ, Estrada-de los Santos P et al (2008) Multichromosomal genome structure and confirmation of diazotrophy in novel plant-associated Burkholderia species. Appl Environ Microbiol 74:4574–4579

    Article  Google Scholar 

  • Martínez-Aguilar L, Salazar-Salazar C, Méndez RD et al (2013) Burkholderia caballeronis sp.nov.,a nitrogen fixing species isolated from tomato (Lycopersiconesculen- tum) with the ability to effectively nodulate Phaseolus vulgaris. AntonieVan Leeuwenhoek 104:1063–1071

    Article  Google Scholar 

  • Moulin L, Munive A, Dreyfus B et al (2001) Nodulation of legumes by members of the beta-subclass of Proteobacteria. Nature 411:948–950

    Article  CAS  Google Scholar 

  • Nandakumar R, Shahjahan AK, Yuan XL et al (2009) Burkholderia glumae and B. gladioli cause bacterial panicle blight in rice in the southern United States. Plant Dis 93:896–905

    Article  CAS  Google Scholar 

  • Nierman WC, DeShazer D, Kim HS et al (2004) Structural flexibility in the Burkholderia mallei genome.Proc. Natl Acad Sci USA 101(39):14246–14251

    Article  CAS  Google Scholar 

  • Oren A, Garrity GM (2015a) List of new names and new combinations previously effectively, but not validly, published. Intl J Sys Evol Microbiol 65:2017–2025

    Article  Google Scholar 

  • Oren A, Garrity GM (2015b) List of new names and new combinations previously effectively, but not validly published. Intl J Sys Evol Microbiol 65:2777–2783

    Article  Google Scholar 

  • Otsuka Y, Muramatsu Y, Nakagawa Y et al (2011) Burkholderia oxyphila sp.nov. a bacterium isolated from acidic forest soil that catabolizes(+)-catechin and its putative aromatic derivatives. Intl J Sys Evol Microbiol 61:249–254

    Article  CAS  Google Scholar 

  • Palleroni NJ (2005) The genus Burkholderia. In: Brenner DJ, Krieg NR, Garrity GM, Staley JT (eds) Bergey’s manual of systematic bacteriology: the proteobacteria; the alpha-, beta-,delta-, and epsilon proteobacteria, vol 2. Springer, East Lansing, pp 575–600

    Chapter  Google Scholar 

  • Parte AC (2013) LPSN–list of prokaryotic names with standing in nomenclature. Nucleic Acids Res:gkt1111

    Google Scholar 

  • Perin L, Martinez-Aguilar L, Paredes-Valdez G et al (2006a) Burkholderia silvatlantica sp.nov. diazotrophic bacterium associated with sugarcane and maize. Intl J Sys Evol Microbiol 56:1931–1937

    Article  CAS  Google Scholar 

  • Perin L, Martinez-Aguilar L, Castro Gonzalez R et al (2006b) Diazotrophic Burkholderia species associated with filed grown maize and sugarcane. Appl Environ Microbiol 72:3103–3110

    Article  CAS  Google Scholar 

  • Reis VM, Estrada-de los Santos P, Tenorio-Salgado S et al (2004) Burkholderia tropica sp. nov. a novel nitrogen-fixing, plant-associated bacterium. Intl J Sys Evol Microbiol 54(6):2155–2162

    Article  CAS  Google Scholar 

  • Rokas A, Holland PW (2000) Rare genomic changes as a tool for phylogenetics. Trends Ecol Evol 15:454–459

    Article  CAS  Google Scholar 

  • Sawana A et al (2014) Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species. Front Genet 5:429

    Article  Google Scholar 

  • Sessitsch A, Coenye T, Sturz AV et al (2005) Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium with plant-beneficial properties. Intl J Sys Evol Microbiol 55:1187–1192

    Article  CAS  Google Scholar 

  • Spilker T, Baldwin A, Bumford A et al (2009) Expanded multi locus sequence typing for Burkholderia species. J Clin Microbiol 47:2607–2610

    Article  CAS  Google Scholar 

  • Suárez-Moreno ZR, Caballero-Mellado J, Coutinho BG et al (2012) Common features of environmental and potentially beneficial plant-associated Burkholderia. Microb Ecol 63:49–266

    Article  Google Scholar 

  • Talbi C, Delgado MJ, Girard L et al (2010) Burkholderia phymatum strains capable of nodulating Phaseolus vulgaris are present in Moroccan soils. Appl Environ Microbiol 76:4587–4591

    Article  CAS  Google Scholar 

  • Urakami T, Ito-Yoshida C, Araki H et al (1994) Transfer of Pseudomonas plantarii and Pseudomonas glumae to Burkholderia as Burkholderia spp. and description of Burkholderia vandii sp. nov. Int J Syst Evol Microbiol 44:235–245

    CAS  Google Scholar 

  • Ussery DW, Kiil K, Lagesen K et al (2009) The genus Burkholderia: analysis of 56 genomic sequences. Genome Dyn 6:140–457

    Article  CAS  Google Scholar 

  • Valverde A, Delvasto P, Peix A et al (2006) Burkholderia ferrariae sp.nov. isolated from an iron ore in Brazil. Intl J Sys Evol Microbiol 56:2421–2425

    Article  CAS  Google Scholar 

  • Van VT, Berge O, Ke SN (2000) Repeated beneficial effects of rice inoculation with a strain of Burkholderia vietnamiensis on early and late yield components in low fertility sulphate acid soils of Vietnam. Plant Soil 218(1–2):273–284

    Article  CAS  Google Scholar 

  • Vandamme P, Peeters C (2014) Time to revisit polyphasic taxonomy. Antonie Van Leeuwenhoek 106:57–65

    Article  Google Scholar 

  • Vandamme P, Holmes B, Vancanneyt M et al (1997) Occurrence of multiple genomovars of Burkholderia cepacia in cystic fibrosis patients and proposal of Burkholderia multivorans sp. nov. Intl J Sys Evol Microbiol 47:1188–1200

    CAS  Google Scholar 

  • Vandamme P, Goris J, Chen WM et al (2002) Burkholderia tuberum sp. nov. and Burkholderia phymatum sp. nov. nodulate the roots of tropical legumes. Syst Appl Microbiol 25:507–512

    Article  Google Scholar 

  • Vandamme P, Opelt K, Knöchel N et al (2007) Burkholderia bryophila sp.nov.and Burkholderia megapolitana sp.nov. moss-associated species with anti fungal and plant-growth-promoting properties. Intl J Sys Evol Microbiol 57:2228–2235

    Article  CAS  Google Scholar 

  • Vanhaverbeke C et al (2003) Conformational analysis of the exopolysaccharide from Burkholderia caribensis strain MWAP71: impact on the interaction with soils. Biopolymers 69(4):480–497

    Article  CAS  Google Scholar 

  • Vanlaere E, LiPuma JJ, Baldwin A et al (2008) Burkholderia latens sp. nov. Burkholderia diffusa sp. nov. Burkholderia arboris sp. nov. Burkholderia seminalis sp. nov. and Burkholderia metallica sp. nov. novel species within the Burkholderia cepacia complex. Intl J Sys Evol Microbiol 58(7):1580–1590

    Article  CAS  Google Scholar 

  • Vanlaere E, Baldwin A, Gevers D et al (2009) Taxon K, a complex within the Burkholderia cepacia complex, comprises at least two novel species Burkholderia contaminans sp nov and Burkholderia lata sp nov. Intl J Sys Evol Microbiol 59(1):102–111

    Article  CAS  Google Scholar 

  • Viallard V, Poirier I, Cournoyer B et al (1998) Burkholderia graminis sp. nov. a rhizospheric Burkholderia species, and reassessment of Pseudomonas phenazinium, Pseudomonas pyrrocinia and Pseudomonas glathei as Burkholderia. Intl J Sys Evol Microbiol 48(2):549–563

    CAS  Google Scholar 

  • White NJ(2003) Melioidosis. Lancet 361:1715

    Article  CAS  Google Scholar 

  • Whitlock GC, Estes DM, Torres AG (2007) Glanders: off to the races with Burkholderia mallei. FEMS Microbiol Lett 277:115–122. doi:10.1111/j.1574-6968.2007. 00949.x

    Article  CAS  PubMed  Google Scholar 

  • Wong-Villarreal A, Caballero-Mellado J et al (2010) Rapid identification of nitrogen-fixing and legume-nodulating Burkholderia species based on PCR 16S rRNA species-specific oligonucleotides. Syst Appl Microbiol 33(1):35–43

    Article  CAS  Google Scholar 

  • Yabuuchi E, Kosako Y, Oyaizu H et al (1992) Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol Immunol 36:1251–1275

    Article  CAS  Google Scholar 

  • Yabuuchi E, Kosako Y, Yano I et al (1995) Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen. nov. proposal of Ralstonia pickettii (Ralston, Palleroni and Doudoroff 1973) comb. nov. Ralstonia solanacearum (Smith 1896) comb. nov. and Ralstonia eutropha (Davis 1969) comb. nov. Microbiol Immunol 39:897–904

    Article  CAS  Google Scholar 

  • Yang HC, Im WT, Kim KK et al (2006) Burkholderia terrae sp. nov., isolated from a forest soil. Intl J Sys Evol Microbiol 56(2):453–457

    Article  CAS  Google Scholar 

  • Zhang H, Hanada S, Shigematsu T et al (2000) Burkholderia kururiensis sp.nov. a trichloroethylene (TCE)-degrading bacterium isolated from an aquifer polluted with TCE. Intl J Sys Evol Microbiol 50:743–749

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Chandandeep Kaur was supported by a grant from the Department of Science and Technology, Ministry of Science and Technology, Government of India, under the WOS-A scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Selvakumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaur, C., Selvakumar, G., Ganeshamurthy, A.N. (2017). Burkholderia to Paraburkholderia: The Journey of a Plant-Beneficial-Environmental Bacterium. In: Shukla, P. (eds) Recent advances in Applied Microbiology . Springer, Singapore. https://doi.org/10.1007/978-981-10-5275-0_10

Download citation

Publish with us

Policies and ethics