Skip to main content

Optical Phase Locked Loop and Frequency Transfer

  • Chapter
  • First Online:
Single Frequency Semiconductor Lasers

Part of the book series: Optical and Fiber Communications Reports ((OFCR,volume 9))

  • 2129 Accesses

Abstract

The optical phase locked loop (OPLL) technology is used to lock not only the central frequency but also the optical phase of a laser onto a highly stable low noise laser. It is used to transfer laser frequency arbitrarily not only to another statically operated stable laser, but also to a dynamically frequency modulated laser, which is an important function in laser technology. Sect. 8.1 gives an explicit introduction to OPLL and its related devices. Sect. 8.2 discusses main applications of OPLL, including coherent optical communications, transportation of time and frequency standards, microwave photonics, and physical researches. Sect. 8.3 gives a brief introduction to the frequency comb, which is an important progress in optics and a powerful tool in laser frequency transfer and laser spectroscopy. Sect 8.4 describes some of related applications of the optical frequency comb.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Ristic S, Bhardwaj A, Rodwell MJ et al (2010) An optical phase-locked loop photonic integrated circuit. J Lightwave Technol 28(4):526–538

    Article  ADS  Google Scholar 

  2. Herzog FT (2006) An optical phase locked loop for coherent space communications. Dissertation of Swiss Federal Institute of Technology, Zurich

    Google Scholar 

  3. Ferrero V, Camatel S (2008) Optical phase locking techniques: an overview and a novel method based on single side sub-carrier modulation. Opt Express 16(2):818–828

    Google Scholar 

  4. Kashima N, Yamaguchi S, Ishii S (2004) Optical transmitter using side-mode injection locking for high-speed photonic LANs. J Lightwave Technol 22(2):550–557

    Article  ADS  Google Scholar 

  5. Snadden MJ, Clarke RBM, Riis E (1997) Injection-locking technique for heterodyne optical phase locking of a diode laser. Opt Lett 22(12):892–894

    Article  ADS  Google Scholar 

  6. Ip E, Lau APT, Barros DJF et al (2008) Coherent detection in optical fiber systems. Opt Express 16(2):753–791

    Google Scholar 

  7. Herzog F, Kudielka K, Erni D et al (2005) Optical phase locked loop for transparent inter-satellite communications. Opt Express 13(10):3816–3821

    Google Scholar 

  8. Yoshida M, Goto H, Kasai K et al (2008) 64 and 128 coherent QAM optical transmission over 150 km using frequency-stabilized laser and heterodyne PLL detection. Opt Express 16(2):829–840

    Article  ADS  Google Scholar 

  9. Shieh W, Bao H, Tang Y (2008) Coherent optical OFDM: theory and design. Opt Express 16(2):841–859

    Article  ADS  Google Scholar 

  10. Clark TR Jr, O’Connor SR, Dennis ML (2010) A phase-modulation I/Q-demodulation microwave-to-digital photonic link. IEEE Trans Microwave Theory Tech 58(11):3039–3058

    Article  ADS  Google Scholar 

  11. Li J, Zhang X, Tian F et al (2011) Theoretical and experimental study on generation of stable and high-quality multi-carrier source based on re-circulating frequency shifter used for Tb/s optical transmission. Opt Express 19(2):848–860

    Article  ADS  Google Scholar 

  12. Hodgkinson TG (1986) Costas loop analysis for coherent optical receiver. Electron Lett 22(7):394–396

    Article  ADS  Google Scholar 

  13. Fang Z, Chin K, Qu R et al (2012) Fundamentals of optical fiber sensors. Wiley

    Google Scholar 

  14. Stephens TD, Nicholson G (1987) Optical homodyne receiver with a six-port fiber coupler. Electron Lett 23(21):1106–1108

    Article  Google Scholar 

  15. Wang Y, Leeb WR (1987) A 90° optical fiber hybrid for optimal signal power utilization. Appl Opt 26(19):4181–4184

    Article  ADS  Google Scholar 

  16. Garreis R, Zeiss C (1991) 90° optical hybrid for coherent receivers. Proc SPIE 1522:210–219

    Article  ADS  Google Scholar 

  17. Langenhorst R, Wenke G (1989) Compact bulk optical 90° hybrid for balanced phase diversity receivers. Electron Lett 25(22):1518–1519

    Article  Google Scholar 

  18. Herzog F, Kudielka K, Erni D et al (2006) Optical phase locking by local oscillator phase dithering. IEEE J Quantum Electron 42(10):973–985

    Article  ADS  Google Scholar 

  19. von Lerber T, Honkanen S, Tervonen A et al (2009) Optical clock recovery methods: review. Opt Fiber Technol 15:363–372

    Article  ADS  Google Scholar 

  20. Ma L, Jungner P, Ye J et al (1994) Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path. Opt Lett 19(21):1777–1779

    Article  ADS  Google Scholar 

  21. Foreman SM, Holman KW, Hudson DD et al (2007) Remote transfer of ultrastable frequency references via fiber networks. Rev Sci Instrum 78:021101(1–25)

    Google Scholar 

  22. Musha M, Hong F, Nakagawa K et al (2008) Coherent optical frequency transfer over 50-km physical distance using a 120-km-long installed telecom fiber network. Opt Express 16(21):16459–16466

    Article  ADS  Google Scholar 

  23. Lopez O, Haboucha A, Chanteau B et al (2012) Ultra-stable long distance optical frequency distribution using the internet fiber network. Opt Express 20(21):23518–23526

    Article  ADS  Google Scholar 

  24. Lopez O, Kanj A, Pottie PE et al (2013) Simultaneous remote transfer of accurate timing and optical frequency over a public fiber network. Appl Phys B 110:3–6

    Article  ADS  Google Scholar 

  25. Calonico D, Bertacco EK, Calosso CE et al (2014) High-accuracy coherent optical frequency transfer over a doubled 642-km fiber link. Appl Phys B 117:979–986

    Article  ADS  Google Scholar 

  26. Williams PA, Swann WC, Newbury NR (2008) High-stability transfer of an optical frequency over long fiber-optic links. J Opt Soc Am B 25(8):1284–1293

    Article  ADS  Google Scholar 

  27. Eckstein JN, Ferguson AI, Hänsch TW (1978) High-resolution two-photon spectroscopy with picosecond light pulses. Phys Rev Lett 40(13):847–850

    Article  ADS  Google Scholar 

  28. Calosso CE, Bertacco EK, Calonico D et al (2015) Doppler-stabilized fiber link with 6 dB noise improvement below the classical limit. Opt Lett 40(2):131–134

    Article  ADS  Google Scholar 

  29. Chen W, Liu Q, Cheng N et al (2015) Joint time and frequency dissemination network over delay-stabilized fiber optic links. IEEE Photon J 7(3):7901609(1–10)

    Google Scholar 

  30. Cheng N, Chen W, Liu Q et al (2016) Joint transfer of time and frequency signals and multi-point synchronization via fiber network. Chin Phys B 25(1):014206(1–8)

    Google Scholar 

  31. Seeds AJ (2002) Microwave photonics. IEEE Trans Microwave Theory Tech 50(3):877–887

    Article  ADS  Google Scholar 

  32. Yao J (2009) Microwave photonics. J Lightwave Technol 27(3):314–335

    Article  ADS  Google Scholar 

  33. Stephens WE, Joseph TR (1987) System characteristics of direct modulated and external modulated RF fiber-optic links. J Lightwave Technol 5(3):380–387

    Article  ADS  Google Scholar 

  34. Yu J, Chang GK, Jia Z et al (2006) A ROF downstream link with optical mm-wave generation using optical phase modulator for providing broadband optical-wireless access service. Optical fiber communication conference, paper-OFM3

    Google Scholar 

  35. Gliese U, Nielsen TN, Bruun M et al (1992) A wideband heterodyne optical phase-locked loop for generation of 3–18 GHz microwave carriers. IEEE Photon Technol Lett 4(8):936–938

    Article  ADS  Google Scholar 

  36. Bordonalli AC, Walton C, Seeds AJ (1999) High-performance phase locking of wide linewidth semiconductor lasers by combined use of optical injection locking and optical phase-lock loop. J Lightwave Technol 17(2):328–342

    Article  ADS  Google Scholar 

  37. Ramos RT, Gallion P, Erasme D et al (1994) Optical injection locking and phase-lock loop combined systems. Opt Lett 19(1):4–6

    Article  ADS  Google Scholar 

  38. Johansson LA, Liu CP, Seeds AJ (2002) A 65-km span unamplified transmission of 36 GHz radio-over-fiber signals using an optical injection phase-lock loop. IEEE Photon Technol Lett 14(11):1596–1598

    Article  ADS  Google Scholar 

  39. Zhao Y, Zheng X, Wen H et al (2009) Simplified optical millimeter-wave generation configuration by frequency quadrupling using two cascaded Mach-Zehnder modulators. Opt Lett 34(21):3250–3252

    Article  ADS  Google Scholar 

  40. Lin CT, Shih PT, Jiang WJ et al (2009) A continuously tunable and filterless optical millimeter-wave generation via frequency octupling. Opt Express 17(22):19749–19756

    Article  ADS  Google Scholar 

  41. Hu WW, Inagaki K, Tanaka T et al (2004) Millimetre-wave band (50 GHz) multi-carrier generation using injection-locking technique for radio-over-fiber WDM communication system. Electron Lett 40(23):1505–1506

    Article  Google Scholar 

  42. Wei F, Lu B, Wang J et al (2015) Precision and broadband frequency swept laser source based on high-order modulation-sideband injection-locking. Opt Express 23(4):4970–4980

    Article  ADS  Google Scholar 

  43. Ito H, Furuta T, Nakajima F et al (2005) Photonic generation of continuous THz wave using uni-traveling-carrier photodiode. J Lightwave Technol 23(12):4016–4021

    Article  ADS  Google Scholar 

  44. Gao S, Hui R (2012) Frequency-modulated continuous-wave lidar using I/Q modulator for simplified heterodyne detection. Opt Lett 37(11):2022–2024

    Article  ADS  Google Scholar 

  45. Chu S (1998) The manipulation of neutral particles. Rev Mod Phys 70(3):685–703

    Article  ADS  MathSciNet  Google Scholar 

  46. Cohen-Tannoudji, Dupont-Roc, Grynberg (1992) Atom-photon interaction: basic processes and applications. Wiley

    Google Scholar 

  47. Phillips WD (1998) Laser cooling and trapping of neutral atoms. Rev Mod Phys 70(3):721–741

    Article  ADS  Google Scholar 

  48. Wang Y (2007) Laser cooling and trapping of atoms. Peking University Press (in Chinese)

    Google Scholar 

  49. Kowalski R, Root S, Gensemer SD et al (2001) A frequency-modulated injection-locked diode laser for two-frequency generation. Rev Sci Instrum 72:2532–2534

    Article  ADS  Google Scholar 

  50. Diao W, He J, Liu Z et al (2012) Alternative laser system for cesium magneto-optical trap via optical injection locking to sideband of a 9-GHz current-modulated diode laser. Opt Express 20(7):7480–7487

    Article  ADS  Google Scholar 

  51. Szymaniec K, Ghezali S, Let Cognet et al (1997) Injection locking of diode lasers to frequency modulated source. Opt Commun 144:50–54

    Article  ADS  Google Scholar 

  52. Park SE, Kwon TY, Lee HS (2003) Production of Raman laser beams using injection-locking technique. IEEE Trans Instrum Measur 52(2):277–279

    Article  Google Scholar 

  53. Ying K, Niu Y, Chen D et al (2014) Realization of cavity linewidth narrowing via interacting dark resonances in a tripod-type electromagnetically induced transparency system. J Opt Soc Am B 31(1):144–148

    Article  ADS  Google Scholar 

  54. Ying K, Niu Y, Chen D et al (2014) Cavity linewidth narrowing by optical pumping-assisted electromagnetically induced transparency in V-type rubidium at room temperature. J Mod Opt 61(4):322–327

    Article  ADS  Google Scholar 

  55. Ying K, Niu Y, Chen D et al (2014) Observation of multi-electromagnetically induced transparency in V-type rubidium atoms. J Mod Opt 61(8):631–635

    Article  ADS  Google Scholar 

  56. Ying K, Niu Y, Chen D et al (2014) Laser frequency offset locking via tripod-type electromagnetically induced transparency. Appl Opt 53(12):2632–2637

    Article  ADS  Google Scholar 

  57. Thom T, Wilpers G, Riis E et al (2013) Accurate and agile digital control of optical phase, amplitude and frequency for coherent atomic manipulation of atomic systems. Opt Express 21(16):18712–18723

    Article  ADS  Google Scholar 

  58. Hänsch TW (2006) Nobel lecture: passion for precision. Rev Mod Phys 78(4):1297–1309

    Article  ADS  Google Scholar 

  59. Xu L, Spielmann C, Poppe A et al (1996) Route to phase control of ultrashort light pulses. Opt Lett 21(24):2008–2010

    Article  ADS  Google Scholar 

  60. Diddams SA, Jones DJ, Ye J et al (2000) Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb. Phys Rev Lett 84(22):5102–5105

    Article  ADS  Google Scholar 

  61. Holzwarth R, Udem T, Hänsch TW et al (2000) Optical frequency synthesizer for precision spectroscopy. Phys Rev Lett 85(11):2264–2267

    Article  ADS  Google Scholar 

  62. Jones DJ, Diddams SA, Ranka JK et al (2000) Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288:635–639

    Article  ADS  Google Scholar 

  63. Diddams SA, Jones DJ, Ma LS et al (2000) Optical frequency measurement across a 104 THz gap with a femtosecond laser frequency comb. Opt Lett 25(3):186–188

    Article  ADS  Google Scholar 

  64. Ma LS, Bi Z, Bartels A et al (2004) Optical frequency synthesis and comparison with uncertainty at the 10−19 level. Science 303:1843–1845

    Google Scholar 

  65. Jones RJ, Moll KD, Thorpe MJ et al (2005) Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity. Phys Rev Lett 94(19):193201(1–4)

    Google Scholar 

  66. Ye J, Cundiff ST (2005) Femtosecond optical frequency comb: principle. Springer, Operation and Applications

    Book  Google Scholar 

  67. Yariv A (1997) Optical electronics in modern communications, 5th edn. Oxford University Press

    Google Scholar 

  68. Saleh BEA, Teich MC (2007) Fundamentals of photonics, Wiley

    Google Scholar 

  69. Dudley J, Genty G, Coen S (2006) Supercontinuum generation in photonic crystal fiber. Rev Mod Phys 78:1135–1184

    Article  ADS  Google Scholar 

  70. Agrawal GP (2004) Nonlinear fiber optics. Elsevier Science

    Google Scholar 

  71. Sefler GA, Kitayama K (1998) Frequency comb generation by four-wave mixing and the role of fiber dispersion. J Lightwave Technol 16(9):1596–1605

    Article  ADS  Google Scholar 

  72. Boggio JMC, Moro S, Windmiller JR et al (2009) Optical frequency comb generated by four-wave mixing in highly nonlinear fibers. Conference of Laser and Electro-Optics (CLEO), CMN7

    Google Scholar 

  73. Kourogi M, Enami T, Ohtsu M (1994) A monolithic optical frequency comb generator. IEEE Photon Technol Lett 6(2):214–217

    Article  ADS  Google Scholar 

  74. Del’Haye P, Schliesser A, Arcizet O et al (2007) Optical frequency comb generation from a monolithic microresonator. Nature 450:1214–1217

    Google Scholar 

  75. Jost JD, Hall JL, Ye J (2002) Continuously tunable, precise, single frequency optical signal generator. Opt Express 10(12):515–520

    Article  ADS  Google Scholar 

  76. Park SE, Kim EB, Park YH et al (2006) Sweep optical frequency synthesizer with a distributed-Bragg-reflector laser injection locked by a single component of an optical frequency comb. Opt Lett 31(24):3594–3596

    Article  ADS  Google Scholar 

  77. Kim YJ, Jin J, Kim Y et al (2008) A wide-range optical frequency generator based on the frequency comb of a femtosecond laser. Opt Express 16(1):258–264

    Article  ADS  Google Scholar 

  78. Ryu HY, Lee SH, Lee WK et al (2008) Absolute frequency measurement of an acetylene stabilized laser using a selected single mode from a femtosecond fiber laser comb. Opt Express 16(5):2867–2873

    Article  ADS  Google Scholar 

  79. Schibli TR, Minoshima K, Hong FL et al (2005) Phase-locked widely tunable optical single-frequency generator based on a femtosecond comb. Opt Lett 30(17):2323–2325

    Article  ADS  Google Scholar 

  80. Benkler E, Rohde F, Telle HR (2013) Robust interferometric frequency lock between cw lasers and optical frequency combs. Opt Lett 38(4):555–557

    Article  ADS  Google Scholar 

  81. Ahtee V, Merimaa M, Nyholm K (2009) Single-frequency synthesis at telecommunication wavelengths. Opt Express 17(6):4890–4896

    Article  ADS  Google Scholar 

  82. Benkler B, Rohde F, Telle HR (2013) Endless frequency shifting of optical frequency comb lines. Opt Express 21(5):5793–5802

    Article  ADS  Google Scholar 

  83. Margolis HS, Huang G, Barwood GP et al (2003) Absolute frequency measurement of the 674-nm 88Sr+ clock transition using a femtosecond optical frequency comb. Phys Rev A 67:032501(1–5)

    Google Scholar 

  84. Fortier TM, Coq YL, Stalnaker JE et al (2006) Kilohertz-resolution spectroscopy of cold atoms with an optical frequency comb. Phys Rev Lett 97:163905(1–4)

    Google Scholar 

  85. Thorpe MJ, Hudson DD, Moll KD et al (2007) Cavity-ringdown molecular spectroscopy based on an optical frequency comb at 1.45–1.65 μm. Opt Lett 32(3):307–309

    Article  ADS  Google Scholar 

  86. Pysher M, Miwa Y, Shahrokhshahi R et al (2011) Parallel generation of quadripartite cluster entanglement in the optical frequency comb. Phys Rev Lett 107:030505(1–4)

    Google Scholar 

  87. Ye J, Schnatz H, Hollberg LW (2003) Optical frequency combs: from frequency metrology to optical phase control. IEEE J Sel Top Quantum Electron 9(4):1041–1057

    Article  Google Scholar 

  88. Diddams SA (2010) The evolving optical frequency comb. J Opt Soc Am B 27(11):B51–B62

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zujie Fang .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Shanghai Jiao Tong University Press and Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Fang, Z., Cai, H., Chen, G., Qu, R. (2017). Optical Phase Locked Loop and Frequency Transfer. In: Single Frequency Semiconductor Lasers . Optical and Fiber Communications Reports, vol 9. Springer, Singapore. https://doi.org/10.1007/978-981-10-5257-6_8

Download citation

Publish with us

Policies and ethics