Advertisement

External Cavity Semiconductor Lasers

  • Zujie Fang
  • Haiwen Cai
  • Gaoting Chen
  • Ronghui Qu
Chapter
Part of the Optical and Fiber Communications Reports book series (OFCR, volume 9)

Abstract

The external cavity diode laser (ECDL) uses the LD chip as gain element and external reflectors as cavity mirrors, instead of the cleaved facets of LD chip. The cavity length can then be extended for a longer photon lifetime; and the external reflector may have strong wavelength selectivity to suppress mode competition effectively. The external reflector can provide an additional tuning method. In this Chapter, general characteristics and theory of ECDL are explained in Sect.  3.1. ECDLs incorporated with planar diffractive gratings are described in Sect.  3.2, especially the structures of Littrow type and Littman type. Section  3.3 introduces ECDL with Bragg gratings, including the fiber Bragg gratings (FBG), the waveguide Bragg grating (WBG) and the volume Bragg grating (VBG). Section  3.4 focuses on ECDL with external Fabry-Perot resonator and ring resonator.

References

  1. 1.
    Pertermann K (1988) Laser diode modulation and noise. Kluwer Academic PublishersGoogle Scholar
  2. 2.
    Ohtsu M (1992) Highly coherent semiconductor lasers. Artech HouseGoogle Scholar
  3. 3.
    Ye C (2004) Tunable external cavity diode lasers. World Scientific Publishing CorporationGoogle Scholar
  4. 4.
    Ohtsubo J (2013) Semiconductor lasers—stability, instability and chaos, 3rd edn. Springer, BerlinGoogle Scholar
  5. 5.
    Born M, Wolf E (1999) Principles of optics, 7th edn. Cambridge University PressGoogle Scholar
  6. 6.
    Lang R, Kobayashi K (1980) External optical feedback effects on semiconductor injection laser properties. IEEE J Quantum Electron 16(3):347–355ADSCrossRefGoogle Scholar
  7. 7.
    Schawlow AL, Townes CH (1958) Infrared and optical masers. Phys Rev 112:1940–1949ADSCrossRefGoogle Scholar
  8. 8.
    Henry CH (1983) Theory of the phase noise and power spectrum of a single mode injection laser. IEEE J Quantum Electron 19(9):1391–1397ADSCrossRefGoogle Scholar
  9. 9.
    Spano P, Piazzolla S, Tamburrini M (1984) Theory of noise in semiconductor lasers in the presence of optical feedback. IEEE J Quantum Electron 20(4):350–357ADSCrossRefGoogle Scholar
  10. 10.
    Agrawal G (1984) Line narrowing in a single-mode injection laser due to external optical feedback. IEEE J Quantum Electron 20(5):468–471ADSCrossRefGoogle Scholar
  11. 11.
    Kitaoka Y, Sato H, Mizuuchi Q et al (1996) Intensity noise of laser diodes with optical feedback. IEEE J Quantum Electron 32(5):822–828ADSCrossRefGoogle Scholar
  12. 12.
    Detoma E, Tromborg B, Montrosset I (2004) Frequency and time domain analysis of an external cavity laser with strong filtered optical feedback. Proc SPIE 5452:283–290ADSCrossRefGoogle Scholar
  13. 13.
    Fischer APA, Andersen OK, Yousefi M et al (2000) Experimental and Theoretical study of filtered optical feedback in a semiconductor laser. IEEE J Quantum Electron 32(3):375–384ADSCrossRefGoogle Scholar
  14. 14.
    Sun H, Menhart S, Adams A (1994) Calculation of spectral linewidth reduction of external-cavity strong-feedback semiconductor lasers. Appl Opt 33(21):4771–4775ADSCrossRefGoogle Scholar
  15. 15.
    Hau LV, Harris SE, Dutton Z et al (1999) Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397:594–598ADSCrossRefGoogle Scholar
  16. 16.
    Khurgin JB (2010) Slow light in various media: a tutorial. Adv Opt Photonics 2(3):287–318CrossRefADSGoogle Scholar
  17. 17.
    Patzak E, Sugimura A, Saito S et al (1983) Semiconductor laser linewidth in optical feedback configurations. Electron Lett 19(24):1026–1027CrossRefGoogle Scholar
  18. 18.
    Kazarinov RF, Henry CH (1987) The relation of line narrowing and chirp reduction resulting from the coupling of a semiconductor laser to a passive resonator. J Quantum Electron 23(9):1401–1409ADSCrossRefGoogle Scholar
  19. 19.
    Tromborg B, Olesen H, Pan X et al (1987) Transmission line description of optical feedback and injection locking for Fabry-Perot and DFB lasers. J Quantum Electron 23(11):1875–1889ADSCrossRefGoogle Scholar
  20. 20.
    Agrawal GP, Henry CH (1988) Modulation performance of a semiconductor laser coupling to an external high-Q resonator. J Quantum Electron 24(2):134–142ADSCrossRefGoogle Scholar
  21. 21.
    Kobayashi S, Kimuw T (1981) Injection locking in AlGaAs semiconductor laser. IEEE J Quantum Electron 17(5):681–689ADSCrossRefGoogle Scholar
  22. 22.
    Lang R (1982) Injection locking properties of a semiconductor laser. IEEE J Quantum Electron 18(6):76–983CrossRefGoogle Scholar
  23. 23.
    Spano P, Piazzola S, Tamburrini M (1986) Frequency and intensity noise in injection-locked semiconductor lasers: theory and experiments. IEEE J Quantum Electron 22(3):427–435ADSCrossRefGoogle Scholar
  24. 24.
    Gordon R (2006) Fabry-Perot semiconductor laser injection locking. IEEE J Quantum Electron 42(4):353–356ADSCrossRefGoogle Scholar
  25. 25.
    Lau EK, Sung HK, Wu MC (2007) Scaling of resonance frequency for strong injection-locked lasers. Opt Lett 32(23):3373–3375ADSCrossRefGoogle Scholar
  26. 26.
    Lau EK, Sung HK, Wu MC (2008) Frequency response enhancement of optical injection-locked lasers. IEEE J Quantum Electron 44(1):90–99ADSCrossRefGoogle Scholar
  27. 27.
    Moon HS, Park SE, Park YH et al (2006) Passive atomic frequency standard based on coherent population trapping in 87Rb using injection-locked lasers. J Opt Soc Am B 23(11):2393–2397ADSCrossRefGoogle Scholar
  28. 28.
    Hong Y, Shore KA (1999) Locking characteristics of a side-mode injected semiconductor laser. IEEE J Quantum Electron 35(11):1713–1717ADSCrossRefGoogle Scholar
  29. 29.
    van Voorst PD, Offerhaus HL, Boller KJ (2006) Single-frequency operation of a broad-area laser diode by injection locking of a complex spatial mode via a double phase conjugate mirror. Opt Lett 31(8):1061–1063ADSCrossRefGoogle Scholar
  30. 30.
    Wyatt R (1985) Spectral linewidth of external cavity semiconductor lasers with strong, frequency-selective feedback. Electron Lett 21(15):658–659CrossRefGoogle Scholar
  31. 31.
    de Labachelerie M, Passedat G (1993) Mode-hop suppression of Littrow grating-tuned lasers. Appl Opt 32(3):269–274ADSCrossRefGoogle Scholar
  32. 32.
    Trutna WR Jr, Stokes LF (1993) Continuously tuned external cavity semiconductor laser. J Lightwave Tech 11(8):1279–1286ADSCrossRefGoogle Scholar
  33. 33.
    Nilse L, Davies HJ, Adams CS (1999) Synchronous tuning of extended cavity diode lasers: the case for an optimum pivot point. Appl Opt 38(3):548–553ADSCrossRefGoogle Scholar
  34. 34.
    Favre F, Le Cuen D, Simon JC et al (1986) External-cavity semiconductor laser with 15 nm continuous tuning range. Electron Lett 22(15):795–796ADSCrossRefGoogle Scholar
  35. 35.
    Hult J, Burns IS, Kaminski CF (2005) Wide-bandwidth mode-hop-free tuning of extended-cavity GaN diode lasers. Appl Opt 44(18):3675–3685ADSCrossRefGoogle Scholar
  36. 36.
    Hawthorn CJ, Weber KP, Scholten RE (2001) Littrow configuration tunable external cavity diode laser with fixed direction output beam. Rev Sci Instrum 72(12):4477–4479ADSCrossRefGoogle Scholar
  37. 37.
    de Labachelerie M, Latrasse C, Diomande K et al (1991) A 1.5 mm absolutely stabilized extended-cavity semiconductor laser. IEEE Trans Instrum Measur 40(2):185–190Google Scholar
  38. 38.
    Liu K, Littman MG (1981) Novel geometry for single-mode scanning of tunable lasers. Opt Lett 6(3):117–118ADSCrossRefGoogle Scholar
  39. 39.
    McNicholl P, Metcalf HJ (1985) Synchronous cavity mode and feedback wavelength scanning in dye laser oscillators with gratings. Appl Opt 24(17):2757–2761ADSCrossRefGoogle Scholar
  40. 40.
    Littman MG, Metcalf HJ (1987) Spectrally narrow pulsed dye laser without beam expander. Appl Opt 17(14):2224–2227ADSCrossRefGoogle Scholar
  41. 41.
    Godard A, Pauliat G, Roosen G et al (2002) Side-mode gain in grating-tuned extended-cavity semiconductor lasers: investigation of stable single-mode operation conditions. IEEE J Quantum Electron 38(4):390–401ADSCrossRefGoogle Scholar
  42. 42.
    Repasky KS, Nehrir AR, Hawthorne JT et al (2006) Extending the continuous tuning range of an external-cavity diode laser. Appl Opt 45(35):9013–9020ADSCrossRefGoogle Scholar
  43. 43.
    Führer T, Walther T (2008) Extension of the mode-hop-free tuning range of an external cavity diode laser based on a model of the mode-hop dynamics. Opt Lett 33(4):372–374ADSCrossRefGoogle Scholar
  44. 44.
    Wei F, Chen D, Xin G et al (2013) A compact and rugged tunable external cavity diode laser with Littman-Metcalf configuration. Chin J Lasers 40(11):1102012(1–7) (in Chinese)Google Scholar
  45. 45.
    Moharam MG, Gaylord TK (1983) Three-dimensional vector coupled-wave analysis of planar-grating diffraction. J Opt Soc Am 73(9):1105–1112ADSCrossRefGoogle Scholar
  46. 46.
    Chen D, Fang Z, Cai H et al (2009) Polarization characteristics of an external cavity diode laser with Littman-Metcalf configuration. IEEE Photonics Technol Lett 21(14):984–986ADSCrossRefGoogle Scholar
  47. 47.
    Filimonov S, Borysow J (1995) Long-range tunable diode laser. Appl Opt 34(3):438–443ADSCrossRefGoogle Scholar
  48. 48.
    Okamura H (2010) Shift lens external-cavity diode laser for broad wavelength tuning and switching. Opt Lett 35(8):1175–1177ADSCrossRefGoogle Scholar
  49. 49.
    Ménager L, Cabaret L, Lorgeré I et al (2000) Diode laser extended cavity for broad-range fast ramping. Opt Lett 25(17):1246–1248ADSCrossRefGoogle Scholar
  50. 50.
    Wang P, Seah LK, Murukeshan VM et al (2006) External-cavity wavelength tunable laser with an electro-optic deflector. Appl Opt 45(34):8772–8776ADSCrossRefGoogle Scholar
  51. 51.
    Wei F, Sun Y, Chen D et al (2011) Tunable external cavity diode laser with a PLZT electrooptic ceramic deflector. IEEE Photonics Technol Lett 23(5):296–298Google Scholar
  52. 52.
    Zhao Y, Peng Y, Yang T et al (2011) External cavity diode laser with kilohertz linewidth by a monolithic folded Fabry-Perot cavity optical feedback. Opt Lett 36(1):34–36ADSCrossRefGoogle Scholar
  53. 53.
    Britzger M, Khalaidovski A, Hemb B et al (2012) External-cavity diode laser in second-order Littrow configuration. Opt Lett 37(15):3117–3119ADSCrossRefGoogle Scholar
  54. 54.
    Chi M, Erbert G, Sumpf B et al (2010) Tunable high-power narrow-spectrum external-cavity diode laser based on tapered amplifier at 668 nm. Opt Lett 35(10):1545–1547ADSCrossRefGoogle Scholar
  55. 55.
    Jensen OB, Sumpf B, Erbert G et al (2011) Widely tunable high-power tapered diode laser at 1060 nm. IEEE Photonics Technol Lett 23(21):1624–1626ADSCrossRefGoogle Scholar
  56. 56.
    Sell JF, Miller W, Wright D et al (2009) Frequency narrowing of a 25 W broad area diode laser. Appl Phys Lett 94:051115(1–3)Google Scholar
  57. 57.
    Liu AQ, Zhang XM, Tang DY et al (2004) Tunable laser using micromachined grating with continuous wavelength tuning. Appl Phys Lett 85(17):3684–3686ADSCrossRefGoogle Scholar
  58. 58.
    Laurain A, Myara M, Beaudoin G et al (2009) High power single-frequency continuously-tunable compact extended-cavity semiconductor laser. Opt Express 17(12):9503–9508ADSCrossRefGoogle Scholar
  59. 59.
    Hill KO, Fujii Y, Johnson DC et al (1978) Photosensitivity in optical fiber waveguides: application to reflection filter fabrication. Appl Phys Lett 32(10):647–649ADSCrossRefGoogle Scholar
  60. 60.
    Meltz G, Morey WW, Glenn WH (1989) Formation of Bragg gratings in optical fibers by a transverse holographic method. Opt Lett 14(15):823–825ADSCrossRefGoogle Scholar
  61. 61.
    Hill KO, Meltz G (1997) Fiber Bragg grating technology fundamentals and overview. J Lightwave Technol 15(8):1263–1276ADSCrossRefGoogle Scholar
  62. 62.
    Kashyap R (1999) Fiber Bragg gratings. Academic PressGoogle Scholar
  63. 63.
    Saleh BEA, Teich MC (2007) Fundamentals of photonics. WileyGoogle Scholar
  64. 64.
    Fang Z, Chin K, Qu R et al (2012) Fundamentals of optical fiber sensors. WileyGoogle Scholar
  65. 65.
    Bird DM, Armitage JR, Kashyap R et al (1991) Narrow line semiconductor laser using fiber grating. Electron Lett 27(13):1115–1116CrossRefGoogle Scholar
  66. 66.
    Morton PA, Mizrahi V, TanbunEk T et al (1994) Stable single mode hybrid laser with high power and narrow linewidth. Appl Phys Lett 64(20):2634–2636ADSCrossRefGoogle Scholar
  67. 67.
    Goyal AK, Gavrilovic P, Po H (1998) 1.35 W of stable single-frequency emission from an external-cavity tapered oscillator utilizing fiber Bragg grating feedback. Appl Phys Lett 73(5):575–577ADSCrossRefGoogle Scholar
  68. 68.
    Loh W, O’Donnell FJ, Plant JJ et al (2011) Packaged, high-Power, narrow-linewidth slab-coupled optical waveguide external cavity laser (SCOWECL). IEEE Photonics Technol Lett 23(14):974–976ADSCrossRefGoogle Scholar
  69. 69.
    Chen G, Qu R, Zhao H et al (1998) Wavelength conversion in a DBR laser with fiber Bragg rating external cavity. ACTA Opt Sin 18(3):257–261 (in Chinese)Google Scholar
  70. 70.
    Zhang W, Ding H, Zhao H et al (1996) An active mode-locked semiconductor laser with a single-mode fiber phase-grating external cavity. ACTA Opt Sin 16(12):1681–1683 (in Chinese)Google Scholar
  71. 71.
    Ding H, Zhao H, Zhang W et al (1998) Electrical wavelength switching of an active mode-locked fiber Bragg grating incorporated fiber ring laser. Chin J Lasers A 25(5):397–400 (in Chinese)Google Scholar
  72. 72.
    Barry LP, Dudley JM, Thomsen BC et al (1998) Frequency-resolved optical gating measurement of 1.4THz beat frequencies from dual wavelength self-seeded gain switched laser diode. Electron Lett 34(10):988–990CrossRefGoogle Scholar
  73. 73.
    Numata K, Camp J, Krainak MA et al (2010) Performance of planar-waveguide external cavity laser for precision measurements. Opt Express 18(22):22781–22788ADSCrossRefGoogle Scholar
  74. 74.
    Numata K, Alalusi M, Stolpner L et al (2014) Characteristics of the single-longitudinal mode planar-waveguide external cavity diode laser at 1064 nm. Opt Lett 39(7):2101–2104ADSCrossRefGoogle Scholar
  75. 75.
    Kane TJ, Byer RL (1985) Monolithic, unidirectional single-mode Nd:YAG ring laser. Opt Lett 10(2):65–67ADSCrossRefGoogle Scholar
  76. 76.
    Efimov OM, Glebov LB, Glebova LN et al (1999) High-efficiency Bragg gratings in photothermorefractive glass. Appl Opt 38(4):619–627ADSCrossRefGoogle Scholar
  77. 77.
    Volodin BL, Dolgy SV, Melnik ED et al (2004) Wavelength stabilization and spectrum narrowing of high-power multimode laser diodes and arrays by use of volume Bragg gratings. Opt Lett 29(16):1891–1893ADSCrossRefGoogle Scholar
  78. 78.
    Venus GB, Sevian A, Smirnov VI et al (2005) High-brightness narrow- line laser diode source with volume Bragg-grating feedback. Proc SPIE 5711:166–176ADSCrossRefGoogle Scholar
  79. 79.
    Lumeau J, Glebov LB, Smirnov V (2006) Tunable narrowband filter based on a combination of Fabry-Perot etalon and volume Bragg grating. Opt Lett 31(16):2417–2419ADSCrossRefGoogle Scholar
  80. 80.
    Meng LS, Nizamov B, Madasamy P et al (2006) High power 7-GHz bandwidth external-cavity diode laser array and its use in optically pumping singlet delta oxygen. Opt Express 14(22):10469–10474ADSCrossRefGoogle Scholar
  81. 81.
    Xin G, Cheng C, Qu R et al (2007) Study of spectral characteristics of external-cavity semiconductor laser with a volume Bragg grating. ACTA Opt Sin 27(10):1821–1826 (in Chinese)Google Scholar
  82. 82.
    Ciapurin IV, Glebov LB, Smirnov VI (2005) Modeling of Gaussian beam diffraction on volume Bragg gratings in PTR glass. Proc SPIE 5742:183–194ADSCrossRefGoogle Scholar
  83. 83.
    Cheng C, Xin G, Feng H et al (2008) Temperature characteristics of volume Bragg grating external cavity semiconductor laser working at continuous wave. Chin J Lasers 35(1):27–30 (in Chinese)CrossRefGoogle Scholar
  84. 84.
    Shen L, Ye Q, Cai H et al (2011) Mode-hop-free electro-optically tuned external-cavity diode laser using volume Bragg grating and PLZT ceramic. Opt Express 19(18):17244–17249ADSCrossRefGoogle Scholar
  85. 85.
    Chuang HC, Jimenez-Martinez R, Braun S et al (2008) Tunable external cavity diode laser using a micromachined silicon flexure and a volume holographic reflection grating for applications in atomic optics. J Micro/Nanolith MEMS MOEMS 7(2):021010(1–13)Google Scholar
  86. 86.
    Allard F, Maksimovic I, Abgrall M et al (2004) Automatic system to control the operation of an extended cavity diode laser. Rev Sci Instrum 75(1):54–58ADSCrossRefGoogle Scholar
  87. 87.
    Baillard X, Gauguet A, Bize S et al (2006) Interference-filter-stabilized external-cavity diode lasers. Opt Commun 266:609–613ADSCrossRefGoogle Scholar
  88. 88.
    Aoyama K, Yoshioka R, Yokota N et al (2014) Experimental demonstration of linewidth reduction of laser diode by compact coherent optical negative feedback system. Appl Phys Express 7:122701ADSCrossRefGoogle Scholar
  89. 89.
    Aoyama K, Yoshioka R, Yokota N et al (2015) Optical negative feedback for linewidth reduction of semiconductor lasers. IEEE Photonics Technol Lett 27(4):340–343ADSCrossRefGoogle Scholar
  90. 90.
    Lewoczko-Adamczyk W, Pyrlik C, Häger J et al (2015) Ultra-narrow linewidth DFB-laser with optical feedback from a monolithic confocal Fabry-Perot cavity. Opt Express 23(8):9705–9709ADSCrossRefGoogle Scholar
  91. 91.
    Liu B, Shakouri A, Bowers JE (2001) Passive microring-resonator-coupled lasers. Appl Phys Lett 79(22):3561–3563ADSCrossRefGoogle Scholar
  92. 92.
    Vahala KJ (2003) Optical microcavities. Nature 424:839–846ADSCrossRefGoogle Scholar
  93. 93.
    Ling W, Ilchenko VS, Eliyahu D et al (2015) Ultralow noise miniature external cavity semiconductor laser. Nat Commun 8371:1–6Google Scholar
  94. 94.
    Pan Z, Ye Q, Cai H et al (2014) Fiber ring with long delay used as a cavity mirror for narrowing fiber laser. IEEE Photonics Technol Lett 26(16):1621–1624ADSCrossRefGoogle Scholar
  95. 95.
    Ye Q, Pan Z, Wang Z et al (2015) Novel slow-light reflector composed of a fiber ring resonator and low-reflectivity fiber Bragg grating. J Lightwave Technol 33(14):3016–3022ADSGoogle Scholar

Copyright information

© Shanghai Jiao Tong University Press and Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Zujie Fang
    • 1
  • Haiwen Cai
    • 1
  • Gaoting Chen
    • 1
  • Ronghui Qu
    • 1
  1. 1.Research Center of Space Laser and Information TechnologyShanghai Institute of Optics and Fine Mechanics, Chinese Academy of SciencesShanghaiChina

Personalised recommendations