Abstract
It is estimated that more than 90% of the mammalian genome is transcribed as non-coding RNAs. Recent evidences have established that these non-coding transcripts are not junk or just transcriptional noise, but they do serve important biological purpose. One of the rapidly expanding fields of this class of transcripts is the regulatory lncRNAs, which had been a major challenge in terms of their molecular functions and mechanisms of action. The emergence of high-throughput technologies and the development in various conventional approaches have led to the expansion of the lncRNA world. The combination of multidisciplinary approaches has proven to be essential to unravel the complexity of their regulatory networks and helped establish the importance of their existence. Here, we review the current methodologies available for discovering and investigating functions of long non-coding RNAs (lncRNAs) and focus on the powerful technological advancement available to specifically address their functional importance.
Keywords
- lncRNA
- Chromatin
- lncRNA interactions
- Secondary structure
- Functional characterization
- Genome-wide characterization
- SAGE
- RNA-Seq
- CLIP
- CHART
- ChIRP
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Waldron C, Lacroute F (1975) Effect of growth rate on the amounts of ribosomal and transfer ribonucleic acids in yeast. J Bacteriol 122:855–865
Comings DE (1972) The structure and function of chromatin. Adv Hum Genet 3:237–431
Fatica A, Bozzoni I (2014) Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet 15:7–21
Cech TR, Steitz JA (2016) The non-coding RNA revolution-trashing old rules to forge new ones. Cell 157:77–94. doi:10.1016/j.cell.2014.03.008
Quinn JJ, Chang HY (2016) Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet 17:47–62. doi:10.1038/nrg.2015.10
Carninci P, Kasukawa T, Katayama S et al (2005) The transcriptional landscape of the mammalian genome. Science 309:1559–1563. doi:10.1126/science.1112014
Djebali S, Davis CA, Merkel A et al (2012) Landscape of transcription in human cells. Nature 489:101–108. doi:10.1038/nature11233
Guttman M, Amit I, Garber M et al (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458:223–227. doi:10.1038/nature07672
De Santa F, Barozzi I, Mietton F et al (2010) A large fraction of extragenic RNA pol II transcription sites overlap enhancers. PLoS Biol 8:e1000384. doi:10.1371/journal.pbio.1000384
Tsoi LC, Iyer MK, Stuart PE et al (2015) Analysis of long non-coding RNAs highlights tissue-specific expression patterns and epigenetic profiles in normal and psoriatic skin. Genome Biol 16:24. doi:10.1186/s13059-014-0570-4
Grote P, Wittler L, Hendrix D et al (2013) The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev Cell 24:206–214. doi:10.1016/j.devcel.2012.12.012
Gibb EA, Vucic EA, Enfield KSS et al (2011) Human cancer long non-coding RNA transcriptomes. PLoS One 6:1–10. doi:10.1371/journal.pone.0025915
Derrien T, Johnson R, Bussotti G et al (2012) The GENCODE v7 catalog of human long non-coding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22:1775–1789. doi:10.1101/gr.132159.111
Wan Y, Kertesz M, Spitale RC et al (2011) Understanding the transcriptome through RNA structure. Nat Rev Genet 12:641–655. doi:10.1038/nrg3049
Underwood JG, Uzilov A V, Katzman S et al (2010) FragSeq: transcriptome-wide RNA structure probing using high-throughput sequencing. Nat Methods 7(12):995–1001. doi:10.1038/NMETH.1529
Rouskin S, Zubradt M, Washietl S et al (2014) Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo. Nature 505:701–705. doi:10.1038/nature12894
Mauger DM, Weeks KM (2010) Toward global RNA structure analysis. Nat Publ Gr 28:1178–1179. doi:10.1038/nbt1110-1178
Flynn RA, Zhang QC, Spitale RC et al (2016) Transcriptome-wide interrogation of RNA secondary structure in living cells with icSHAPE. Nat Protoc 11:273–290. doi:10.1038/nprot.2016.011
Li L, Chang HY (2014) Physiological roles of long non-coding RNAs: insight from knockout mice. Trends Cell Biol 24:594–602. doi:10.1016/j.tcb.2014.06.003
Tsai M-C, Manor O, Wan Y et al (2010) Long non-coding RNA as modular scaffold of histone modification complexes. Science 329:689–693. doi:10.1126/science.1192002
Tripathi V, Ellis JD, Shen Z et al (2010) The nuclear-retained non-coding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell 39:925–938. doi:10.1016/j.molcel.2010.08.011
Kapranov P, St Laurent G, Raz T et al (2010) The majority of total nuclear-encoded non-ribosomal RNA in a human cell is “dark matter” un-annotated RNA. BMC Biol 8:149. doi:10.1186/1741-7007-8-149
Fort A, Hashimoto K, Yamada D et al (2014) Deep transcriptome profiling of mammalian stem cells supports a regulatory role for retrotransposons in pluripotency maintenance. Nat Genet 46:558–566. doi:10.1038/ng.2965
Carrieri C, Cimatti L, Biagioli M et al (2012) Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature 491:454–457. doi:10.1038/nature11508
Ling H, Vincent K, Pichler M et al (2015) Junk DNA and the long non-coding RNA twist in cancer genetics. Oncogene 34:5003–5011. doi:10.1038/onc.2014.456
Kung JTY, Colognori D, Lee JT (2013) Long non-coding RNAs: past, present, and future. Genetics 193:651–669. doi:10.1534/genetics.112.146704
Rinn JL, Chang HY (2012) Genome regulation by long non-coding RNAs. Annu Rev Biochem 81:145–166. doi:10.1146/annurev-biochem-051410-092902
Okazaki Y, Furuno M, Kasukawa T et al (2002) Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature 420:563–573. doi:10.1038/nature01266
Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science 270:484–487
Cheng J, Kapranov P, Drenkow J et al (2005) Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science 308:1149–1154. doi:10.1126/science.1108625
Katayama S, Tomaru Y, Kasukawa T et al (2005) Antisense transcription in the mammalian transcriptome. Science 309:1564–1566. doi:10.1126/science.1112009
Rinn JL, Kertesz M, Wang JK et al (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by non-coding RNAs. Cell 129:1311–1323. doi:10.1016/j.cell.2007.05.022
Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111. doi:10.1093/bioinformatics/btp120
Sultan M, Schulz MH, Richard H et al (2008) A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science 321:956–960. doi:10.1126/science.1160342
Quinn EM, Cormican P, Kenny EM et al (2013) Development of strategies for SNP detection in RNA-seq data: application to lymphoblastoid cell lines and evaluation using 1000 genomes data. PLoS One 8:e58815. doi:10.1371/journal.pone.0058815
Edgren H, Murumagi A, Kangaspeska S et al (2011) Identification of fusion genes in breast cancer by paired-end RNA-sequencing. Genome Biol 12:R6. doi:10.1186/gb-2011-12-1-r6
Guttman M, Garber M, Levin JZ et al (2010) Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat Biotechnol 28:503–510. doi:10.1038/nbt.1633
Cabili MN, Trapnell C, Goff L et al (2011) Integrative annotation of human large intergenic non-coding RNAs reveals global properties and specific subclasses. Genes Dev 25:1915–1927. doi:10.1101/gad.17446611
Mercer TR, Gerhardt DJ, Dinger ME et al (2011) Targeted RNA sequencing reveals the deep complexity of the human transcriptome. Nat Biotechnol 30:99–104. doi:10.1038/nbt.2024
Bussotti G, Leonardi T, Clark MB et al (2016) Improved definition of the mouse transcriptome via targeted RNA sequencing. Genome Res 26:705–716. doi:10.1101/gr.199760.115
Iyer MK, Niknafs YS, Malik R et al (2015) The landscape of long non-coding RNAs in the human transcriptome. Nat Genet 47:199–208. doi:10.1038/ng.3192
Zhang Y, Wong C-H, Birnbaum RY et al (2013) Chromatin connectivity maps reveal dynamic promoter-enhancer long-range associations. Nature 504:306–310. doi:10.1038/nature12716
Shiraki T, Kondo S, Katayama S et al (2003) Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage. Proc Natl Acad Sci U S A 100:15776–15781. doi:10.1073/pnas.2136655100
Lasda E, Parker R (2014) Circular RNAs: diversity of form and function. RNA 20:1829–1842. doi:10.1261/rna.047126.114
Plessy C, Bertin N, Takahashi H et al (2010) Linking promoters to functional transcripts in small samples with nanoCAGE and CAGEscan. Nat Methods 7:528–534. doi:10.1038/nmeth.1470
Guttman M, Rinn JL (2012) Modular regulatory principles of large non-coding RNAs. Nature 482:339–346. doi:10.1038/nature10887
Yang L, Duff MO, Graveley BR et al (2011) Genomewide characterization of non-polyadenylated RNAs. Genome Biol 12:R16. doi:10.1186/gb-2011-12-2-r16
Kim JK, Kolodziejczyk AA, Ilicic T et al (2015) Characterizing noise structure in single-cell RNA-seq distinguishes genuine from technical stochastic allelic expression. Nat Commun 6:8687. doi:10.1038/ncomms9687
Finn RD, Mistry J, Tate J et al (2010) The Pfam protein families database. Nucleic Acids Res 38:D211–D222. doi:10.1093/nar/gkp985
Ohnishi Y, Huber W, Tsumura A et al (2014) Cell-to-cell expression variability followed by signal reinforcement progressively segregates early mouse lineages. Nat Cell Biol 16:27–37. doi:10.1038/ncb2881
Liu SJ, Nowakowski TJ, Pollen AA et al (2016) Single-cell analysis of long non-coding RNAs in the developing human neocortex. Genome Biol 17:67. doi:10.1186/s13059-016-0932-1
Saliba A-E, Westermann AJ, Gorski SA, Vogel J (2014) Single-cell RNA-seq: advances and future challenges. Nucleic Acids Res 42:8845–8860. doi:10.1093/nar/gku555
Mattick JS (2009) The genetic signatures of non-coding RNAs. PLoS Genet 5:e1000459. doi:10.1371/journal.pgen.1000459
Tripathi V, Shen Z, Chakraborty A et al (2013) Long non-coding RNA MALAT1 controls cell cycle progression by regulating the expression of oncogenic transcription factor B-MYB. PLoS Genet 9(3):e1003368. doi:10.1371/journal.pgen.1003368
Chen L-L, Carmichael GG (2009) Altered nuclear retention of mRNAs containing inverted repeats in human embryonic stem cells: functional role of a nuclear non-coding RNA. Mol Cell 35:467–478. doi:10.1016/j.molcel.2009.06.027
Hutchinson JN, Ensminger AW, Clemson CM et al (2007) A screen for nuclear transcripts identifies two linked non-coding RNAs associated with SC35 splicing domains. BMC Genomics 8:39. doi:10.1186/1471-2164-8-39
Femino AM, Fay FS, Fogarty K, Singer RH (1998) Visualization of single RNA transcripts in-situ. Science 280:585–590
Fan Y, Braut SA, Lin Q et al (2001) Determination of transgenic loci by expression FISH. Genomics 71:66–69. doi:10.1006/geno.2000.6403
Dirks RW, Raap AK (1995) Cell-cycle-dependent gene expression studied by two-colour fluorescent detection of a mRNA and histone mRNA. Histochem Cell Biol 104:391–395
Clemson CM, McNeil JA, Willard HF, Lawrence JB (1996) XIST RNA paints the inactive X chromosome at interphase: evidence for a novel RNA involved in nuclear/chromosome structure. J Cell Biol 132:259–275
Bridger JM, Kalla C, Wodrich H et al (2005) Nuclear RNAs confined to a reticular compartment between chromosome territories. Exp Cell Res 302:180–193. doi:10.1016/j.yexcr.2004.07.038
Clemson CM, Hutchinson JN, Sara SA et al (2009) An architectural role for a nuclear non-coding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol Cell 33:717–726. doi:10.1016/j.molcel.2009.01.026
Redrup L, Branco MR, Perdeaux ER et al (2009) The long non-coding RNA Kcnq1ot1 organises a lineage-specific nuclear domain for epigenetic gene silencing. Development 136:525–530. doi:10.1242/dev.031328
Raj A, van den Bogaard P, Rifkin SA et al (2008) Imaging individual mRNA molecules using multiple singly labeled probes. Nat Methods 5:877–879. doi:10.1038/nmeth.1253
Raj A, Tyagi S (2010) Detection of individual endogenous RNA transcripts in-situ using multiple singly labeled probes. Methods Enzymol 472:365–386. doi:10.1016/S0076-6879(10)72004-8
Raj A, Rifkin SA, Andersen E, van Oudenaarden A (2010) Variability in gene expression underlies incomplete penetrance. Nature 463:913–918. doi:10.1038/nature08781
Sahu NK, Shilakari G, Nayak A, Kohli D V (2007) Antisense technology: a selective tool for gene expression regulation and gene targeting. Curr Pharm Biotechnol 8:291–304
Guttman M, Donaghey J, Carey BW et al (2011) lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 477:295–300. doi:10.1038/nature10398
Sarma K, Levasseur P, Aristarkhov A, Lee JT (2010) Locked nucleic acids (LNAs) reveal sequence requirements and kinetics of Xist RNA localization to the X chromosome. Proc Natl Acad Sci U S A 107:22196–22201. doi:10.1073/pnas.1009785107
Orom UA, Derrien T, Guigo R, Shiekhattar R (2010) Long non-coding RNAs as enhancers of gene expression. Cold Spring Harb Symp Quant Biol 75:325–331. doi:10.1101/sqb.2010.75.058
Zalatan JG, Lee ME, Almeida R et al (2015) Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell 160:339–350. doi:10.1016/j.cell.2014.11.052
Qi LS, Larson MH, Gilbert LA et al (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173–1183. doi:10.1016/j.cell.2013.02.022
Gilbert LA, Larson MH, Morsut L et al (2013) CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154:442–451. doi:10.1016/j.cell.2013.06.044
Gilbert LA, Horlbeck MA, Adamson B et al (2014) Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159:647–661. doi:10.1016/j.cell.2014.09.029
Nakagawa S, Ip JY, Shioi G et al (2012) Malat1 is not an essential component of nuclear speckles in mice. RNA 18:1487–1499. doi:10.1261/rna.033217.112
Eissmann M, Gutschner T, Hammerle M et al (2012) Loss of the abundant nuclear non-coding RNA MALAT1 is compatible with life and development. RNA Biol 9:1076–1087. doi:10.4161/rna.21089
Schorderet P, Duboule D (2011) Structural and functional differences in the long non-coding RNA hotair in mouse and human. PLoS Genet 7:e1002071. doi:10.1371/journal.pgen.1002071
Sauvageau M, Goff LA, Lodato S et al (2013) Multiple knockout mouse models reveal lincRNAs are required for life and brain development. Elife 2:e01749. doi:10.7554/eLife.01749
McFadden EJ, Hargrove AE (2016) Biochemical methods to investigate lncRNA and the influence of lncRNA:protein complexes on chromatin. Biochemistry 55:1615–1630. doi:10.1021/acs.biochem.5b01141
Lai F, Blumenthal E, Shiekhattar R (2016) Detection and analysis of long non-coding RNAs. Methods Enzymol 573:421–444. doi:10.1016/bs.mie.2016.03.010
Kashi K, Henderson L, Bonetti A, Carninci P (2016) Discovery and functional analysis of lncRNAs: methodologies to investigate an uncharacterized transcriptome. Biochim Biophys Acta 1859:3–15. doi:10.1016/j.bbagrm.2015.10.010
Ferre F, Colantoni A, Helmer-Citterich M (2016) Revealing protein-lncRNA interaction. Brief Bioinform 17:106–116. doi:10.1093/bib/bbv031
Chu C, Spitale RC, Chang HY (2015) Technologies to probe functions and mechanisms of long non-coding RNAs. Nat Struct Mol Biol 22:29–35. doi:10.1038/nsmb.2921
Eddy SR (2001) Non-coding RNA genes and the modern RNA world. Nat Rev Genet 2:919–929. doi:10.1038/35103511
Marin-Bejar O, Huarte M (2015) RNA pulldown protocol for in vitro detection and identification of RNA-associated proteins. Methods Mol Biol 1206:87–95. doi:10.1007/978-1-4939-1369-5_8
Bai Q, Bai Z, Sun L (2016) Detection of RNA-binding proteins by in vitro RNA pull-down in adipocyte culture. J Vis Exp. doi:10.3791/54207
Zhao J, Sun BK, Erwin JA et al (2008) Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322:750–756. doi:10.1126/science.1163045
Chu C, Zhang QC, da Rocha ST et al (2015) Systematic discovery of Xist RNA binding proteins. Cell 161:404–416. doi:10.1016/j.cell.2015.03.025
Hogg JR, Collins K (2007) RNA-based affinity purification reveals 7SK RNPs with distinct composition and regulation. RNA 13:868–880. doi:10.1261/rna.565207
Yoon J-H, Srikantan S, Gorospe M (2012) MS2-TRAP (MS2-tagged RNA affinity purification): tagging RNA to identify associated miRNAs. Methods 58:81–87. doi:10.1016/j.ymeth.2012.07.004
Yoon J-H, Gorospe M (2016) Identification of mRNA-interacting factors by MS2-TRAP (MS2-tagged RNA affinity purification). Methods Mol Biol 1421:15–22. doi:10.1007/978-1-4939-3591-8_2
Guil S, Soler M, Portela A et al (2012) Intronic RNAs mediate EZH2 regulation of epigenetic targets. Nat Struct Mol Biol 19:664–670. doi:10.1038/nsmb.2315
Xi L, Cech TR (2015) Protein-RNA interaction restricts telomerase from running through the stop sign. Nat Struct Mol Biol 22:835–836. doi:10.1038/nsmb.3118
Spitzer J, Hafner M, Landthaler M et al (2014) PAR-CLIP (photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation): a step-by-step protocol to the transcriptome-wide identification of binding sites of RNA-binding proteins. Methods Enzymol 539:113–161. doi:10.1016/B978-0-12-420120-0.00008-6
Yoon J-H, De S, Srikantan S et al (2014) PAR-CLIP analysis uncovers AUF1 impact on target RNA fate and genome integrity. Nat Commun 5:5248. doi:10.1038/ncomms6248
Kaneko S, Son J, Shen SS et al (2013) PRC2 binds active promoters and contacts nascent RNAs in embryonic stem cells. Nat Struct Mol Biol 20:1258–1264. doi:10.1038/nsmb.2700
Konig J, Zarnack K, Rot G et al (2011) iCLIP—transcriptome-wide mapping of protein-RNA interactions with individual nucleotide resolution. J Vis Exp. doi:10.3791/2638
Wang Z, Kayikci M, Briese M et al (2010) iCLIP predicts the dual splicing effects of TIA-RNA interactions. PLoS Biol 8:e1000530. doi:10.1371/journal.pbio.1000530
Schmitz K-M, Mayer C, Postepska A, Grummt I (2010) Interaction of non-coding RNA with the rDNA promoter mediates recruitment of DNMT3b and silencing of rRNA genes. Genes Dev 24:2264–2269. doi:10.1101/gad.590910
Martianov I, Ramadass A, Serra Barros A et al (2007) Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript. Nature 445:666–670. doi:10.1038/nature05519
Jeon Y, Lee JT (2011) YY1 tethers Xist RNA to the inactive X nucleation center. Cell 146:119–133. doi:10.1016/j.cell.2011.06.026
Chu C, Qu K, Zhong FL et al (2011) Genomic maps of long non-coding RNA occupancy reveal principles of RNA-chromatin interactions. Mol Cell 44:667–678. doi:10.1016/j.molcel.2011.08.027
Quinn JJ, Ilik IA, Qu K et al (2014) Revealing long non-coding RNA architecture and functions using domain-specific chromatin isolation by RNA purification. Nat Biotechnol 32:933–940. doi:10.1038/nbt.2943
Engreitz JM, Pandya-Jones A, McDonel P et al (2013) The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science 341:1237973. doi:10.1126/science.1237973
Engreitz JM, Sirokman K, Mcdonel P et al (2014) Resource RNA-RNA interactions enable specific targeting of non-coding RNAs to nascent pre-mRNAs and chromatin sites. Cell 159:188–199. doi:10.1016/j.cell.2014.08.018
Mchugh CA, Chen C, Chow A et al (2015) The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature 521:232–236. doi:10.1038/nature14443
Lieberman-Aiden E, van Berkum NL, Williams L et al (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289–293. doi:10.1126/science.1181369
Dixon JR, Selvaraj S, Yue F et al (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485:376–380. doi:10.1038/nature11082
Simon MD, Wang CI, Kharchenko PV et al (2011) The genomic binding sites of a non-coding RNA. Proc Natl Acad Sci U S A 108(51):20497–20502. doi:10.1073/pnas.1113536108
Davis CP, West JA (2015) Purification of specific chromatin regions using oligonucleotides: capture hybridization analysis of RNA targets (CHART). Methods Mol Biol 1262:167–182. doi:10.1007/978-1-4939-2253-6_10
Simon MD, Pinter SF, Fang R et al (2013) Spreading during X-chromosome inactivation. Nature 504:465–469. doi:10.1038/nature12719
West JA, Davis CP, Sunwoo H et al (2014) Resource the long non-coding RNAs NEAT1 and MALAT1 bind active chromatin sites. Mol Cell 55:791–802. doi:10.1016/j.molcel.2014.07.012
Tollervey JR, Curk T, Rogelj B et al (2011) Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nat Neurosci 14:452–458. doi:10.1038/nn.2778
Wang G, Chen H-W, Oktay Y et al (2010) PNPASE regulates RNA import into mitochondria. Cell 142:456–467. doi:10.1016/j.cell.2010.06.035
Helwak A, Tollervey D (2014) Mapping the miRNA interactome by cross-linking ligation and sequencing of hybrids (CLASH). 9:711–728. doi: 10.1038/nprot.2014.043
Kudla G, Granneman S, Hahn D et al (2011) Cross-linking, ligation, and sequencing of hybrids reveals RNA-RNA interactions in yeast. Proc Natl Acad Sci U S A 108:10010–10015. doi:10.1073/pnas.1017386108
Helwak A, Kudla G, Dudnakova T, Tollervey D (2013) Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 153:654–665. doi:10.1016/j.cell.2013.03.043
Ingolia NT, Lareau LF, Weissman JS (2011) Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 147:789–802. doi:10.1016/j.cell.2011.10.002
Ingolia NT, Ghaemmaghami S, Newman JRS, Weissman JS (2009) Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324:218–223. doi:10.1126/science.1168978
Ruiz-Orera J, Messeguer X, Subirana JA, Alba MM (2014) Long non-coding RNAs as a source of new peptides. Elife 3:e03523. doi:10.7554/eLife.03523
Bazzini AA, Johnstone TG, Christiano R et al (2014) Identification of small ORFs in vertebrates using ribosome footprinting and evolutionary conservation. EMBO J 33:981–993. doi:10.1002/embj.201488411
Guttman M, Russell P, Ingolia NT et al (2013) Ribosome profiling provides evidence that large non-coding RNAs do not encode proteins. Cell 154:240–251. doi:10.1016/j.cell.2013.06.009
Anderson DM, Anderson KM, Chang C-L et al (2015) A micropeptide encoded by a putative long non-coding RNA regulates muscle performance. Cell 160:595–606. doi:10.1016/j.cell.2015.01.009
Heiman M, Kulicke R, Fenster RJ et al (2014) Cell type—specific mRNA purification by translating ribosome affinity purification (TRAP). Nat Protoc 9:1282–1291. doi:10.1038/nprot.2014.085
Hupe M, Li MX, Gertow Gillner K et al (2014) Evaluation of TRAP-sequencing technology with a versatile conditional mouse model. Nucleic Acids Res 42:e14. doi:10.1093/nar/gkt995
Maenner S, Blaud M, Fouillen L et al (2010) 2-D structure of the A region of Xist RNA and its implication for PRC2 association. PLoS Biol 8:e1000276. doi:10.1371/journal.pbio.1000276
Novikova IV, Dharap A, Hennelly SP, Sanbonmatsu KY (2013) 3S: shotgun secondary structure determination of long non-coding RNAs. Methods 63:170–177. doi:10.1016/j.ymeth.2013.07.030
Kertesz M, Wan Y, Mazor E et al (2010) Genome-wide measurement of RNA secondary structure in yeast. Nature 467:103–107. doi:10.1038/nature09322
Wilkinson KA, Merino EJ, Weeks KM (2006) Selective 2’-hydroxyl acylation analyzed by primer extension (SHAPE): quantitative RNA structure analysis at single nucleotide resolution. Nat Prot 1:1610–1616. doi:10.1038/nprot.2006.249
Somarowthu S, Legiewicz M, Liu F et al (2015) HOTAIR forms an intricate and modular secondary structure. Mol Cell 58:353–361
Du Z, Fei T, Verhaak RGW et al (2013) Integrative genomic analyses reveal clinically relevant long non-coding RNAs in human cancer. Nat Struct Mol Biol 20:908–913. doi:10.1038/nsmb.2591
Fritah S, Niclou SP, Azuaje F (2014) Databases for lncRNAs: a comparative evaluation of emerging tools. RNA 20:1655–1665. doi:10.1261/rna.044040.113
Liu Y, Lu X (2012) Non-coding RNAs in DNA damage response. Am J Cancer Res 2:658–675
Yoon J, Abdelmohsen K, Srikantan S et al (2012) LincRNA-p21 suppresses target mRNA translation. Mol Cell 47:648–655. doi:10.1016/j.molcel.2012.06.027
Hung T, Wang Y, Lin MF et al (2011) Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat Genetics 43(7):621–9. doi:10.1038/ng.848
Schmitt AM, Garcia JT, Hung T et al (2016) An inducible long non-coding RNA amplifies DNA damage signaling. Nat Genet 48(11):1370–1376. doi:10.1038/ng.3673
Lukas J, Altmeyer M (2015) A lncRNA to repair DNA. EMBO Rep 16:1413–1414
Lee S, Kopp F, Chang T et al (2016) Non-coding RNA NORAD regulates genomic stability by sequestering PUMILIO proteins non-coding RNA NORAD regulates genomic stability by sequestering PUMILIO proteins. Cell 164:69–80. doi:10.1016/j.cell.2015.12.017
Wan G, Hu X, Liu Y et al (2013) A novel non-coding RNA lncRNA-JADE connects DNA damage signalling to histone H4 acetylation. EMBO J 32:2833–2847. doi:10.1038/emboj.2013.221
Wan G, Mathur R, Hu X et al (2013) Long non-coding RNA ANRIL ( CDKN2B-AS ) is induced by the ATM-E2F1 signaling pathway. Cell Signal 25:1086–1095. doi:10.1016/j.cellsig.2013.02.006
Loewer S, Cabili MN, Guttman M et al (2010) Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nat Genet 42(12):1113–1117. doi:10.1038/ng.710
Ghosal S, Das S, Chakrabarti J (2013) Long non-coding RNAs: new players in the molecular mechanism for maintenance and differentiation of pluripotent stem cells. Stem Cells Dev 22:2240–2253. doi:10.1089/scd.2013.0014
Hung T, Chang HY (2010) Long noncoding RNA in genome regulation: prospects and mechanisms. RNA Biol 7:582–585
Eades G, Zhang Y, Li Q et al (2014) Long non-coding RNAs in stem cells and cancer. World J Clin Oncol 5:134–142. doi:10.5306/wjco.v5.i2.134
Loewer S, Cabili MN, Guttman M et al (2010) Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nature Genetics 42(12):1113–7. doi:10.1038/ng.710
Wang KC, Chang HY (2011) Molecular Mechanisms of Long Noncoding RNAs. Mol Cell 43(6):904–14. doi:10.1016/j.molcel.2011.08.018
Grammatikakis I, Panda AC, Abdelmohsen K, Gorospe M (2014) Non-coding RNAs (lncRNAs ) and the molecular hallmarks of aging. Aging (Albany NY) 6:992–1009
Zhao YAN, Guo Q, Chen J et al (2014) Role of long non-coding RNA HULC in cell proliferation, apoptosis and tumor metastasis of gastric cancer: a clinical and in vitro investigation. Oncol Rep 31:358–364. doi:10.3892/or.2013.2850
Ying L, Huang Y, Chen H et al (2013) Downregulated MEG3 activates autophagy and increases cell proliferation in bladder cancer. Mol Biosyst 9:407–411. doi:10.1039/c2mb25386k
Liu X, Li D, Zhang W et al (2012) Long non-coding RNA gadd7 interacts with TDP-43 and regulates Cdk6 mRNA decay. EMBO J 31:4415–4427. doi:10.1038/emboj.2012.292
Huang J, Zhou N, Watabe K et al (2014) Long non-coding RNA UCA1 promotes breast tumor growth by suppression of p27 (Kip1). Cell Death Dis 27:1–10. doi:10.1038/cddis.2013.541
Rapicavoli NA, Qu K, Zhang J, Mikhail M (2013) A mammalian pseudogene lncRNA at the interface of inflammation and anti-inflammatory therapeutics. eLife 50:1–16. doi:10.7554/eLife.00762
Li Z, Chao T, Chang K et al (2013) The long non-coding RNA THRIL regulates TNF α expression through its interaction with hnRNPL. Proc Natl Acad Sci U S A 111:1002–1007. doi:10.1073/pnas.1313768111
Atianand MK, Hu W, Satpathy AT et al (2016) A long non-coding RNA lincRNA-EPS acts as a transcriptional brake to restrain inflammation article a long non-coding RNA lincRNA-EPS acts as a transcriptional brake to restrain inflammation. Cell 165:1672–1685. doi:10.1016/j.cell.2016.05.075
Samper E, Flores JM, Blasco MA (2001) Restoration of telomerase activity rescues chromosomal instability and premature aging in Terc–/– mice with short telomeres. EMBO Rep 2:800–807
Porro A, Feuerhahn S, Lingner J (2014) TERRA-reinforced association of LSD1 with MRE11 promotes processing of uncapped telomeres. Cell Rep 6:765–776. doi:10.1016/j.celrep.2014.01.022
Abdelmohsen K, Panda AC, Kang M et al (2014) 7SL RNA represses p53 translation by competing with HuR. Nucleic Acids Res 42:10099–10111. doi:10.1093/nar/gku686
Mourtada-Maarabouni M, Pickard MR, Hedge VL, Farzaneh F, Williams GT (2009) GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer. Oncogene 28:195–208. doi:10.1038/onc.2008.373
Di Agostino S, Strano S, Emiliozzi V et al (2006) Gain of function of mutant p53: the mutant p53/NF-Y protein complex reveals an aberrant transcriptional mechanism of cell cycle regulation. Cancer Cell 10:191–202. doi:10.1016/j.ccr.2006.08.013
Yoon J, Abdelmohsen K, Kim J et al (2013) Scaffold function of long non-coding RNA HOTAIR in protein ubiquitination. Nat Commun 4:1–14. doi:10.1038/ncomms3939
Johnsson P, Ackley A, Vidarsdottir L et al (2013) A pseudogene long-non-coding-RNA network regulates PTEN transcription and translation in human cells. Nat Struct Mol Biol 20:440–446. doi:10.1038/nsmb.2516
Bierhoff H, Dammert MA, Brocks D et al (2014) Short article. Quiescence-induced LncRNAs trigger H4K20 trimethylation and transcriptional silencing. Mol Cell 54:675–682. doi:10.1016/j.molcel.2014.03.032
Oakes C, Weichenhan D, Arab K et al (2013) Long non-coding RNA TARID directs demethylation and activation of the tumor suppressor TCF21 via GADD45A. Mol Cell 55:604–614. doi:10.1016/j.molcel.2014.06.031
Luo M, Jeong M, Li W et al (2015) Long non-coding RNAs control hematopoietic stem cell function. Cell Stem Cell 16:426–438. doi:10.1016/j.stem.2015.02.002
Cesana M, Cacchiarelli D, Legnini I et al (2011) A long non-coding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147:358–369. doi:10.1016/j.cell.2011.09.028
Klattenhoff CA, Scheuermann JC, Surface LE et al (2013) Braveheart, a long non-coding RNA required for cardiovascular lineage commitment. Cell 152:570–583. doi:10.1016/j.cell.2013.01.003
Grote P, Herrmann BG (2015) Long non-coding RNAs in organogenesis: making the difference. Trends Genet 31:329–335. doi:10.1016/j.tig.2015.02.002
Zhu JG, Shen YH, Liu HL et al (2014) Long non-coding RNAs expression profile of the developing mouse heart. J Cell Biochem 115:910–918. doi:10.1002/jcb.24733
Ramos AD, Andersen RE, Kriegstein AR et al (2015) The long non-coding RNA Pnky regulates neuronal stem cells short article the long non-coding RNA Pnky regulates neuronal differentiation of embryonic and postnatal neural stem cells. Stem Cell 16:439–447. doi:10.1016/j.stem.2015.02.007
Richards EJ, Zhang G, Li Z et al (2015) Long non-coding RNAs (LncRNA) regulated by transforming growth factor (TGF). J Biol Chem 290:6857–6867. doi:10.1074/jbc.M114.610915
Xiao C, Wu C, Hu H (2016) LncRNA UCA1 promotes epithelial-mesenchymal transition (EMT) of breast cancer cells via enhancing Wnt/beta-catenin signaling pathway. Eur Rev Med Pharmacol Sci 7:2819–2824
Pickard MR, Williams GT (2013) Long non-coding RNA GAS5 regulates apoptosis in prostate cancer cell lines. Biochim Biophys Acta 1832:1613–1623. doi:10.1016/j.bbadis.2013.05.005
Khaitan D, Dinger ME, Mazar J et al (2011) The melanoma-upregulated long non-coding RNA SPRY4-IT1 modulates apoptosis and invasion. Cancer Res 15:3852–3862. doi:10.1158/0008-5472.CAN-10-4460
Volders PJ, Helsens K, Wang X et al (2013) LNCipedia: a database for annotated human IncRNA transcript sequences and structures. Nucleic Acids Res 41:1–6. doi:10.1093/nar/gks915
Volders PJ, Verheggen K, Menschaert G et al (2015) An update on LNCipedia: a database for annotated human lncRNA sequences. Nucleic Acids Res 43:D174–D180. doi:10.1093/nar/gku1060
Amaral PP, Clark MB, Gascoigne DK et al (2011) LncRNAdb: a reference database for long non-coding RNAs. Nucleic Acids Res 39:146–151. doi:10.1093/nar/gkq1138
Quek XC, Thomson DW, Maag JLV et al (2015) lncRNAdb v2.0: expanding the reference database for functional long non-coding RNAs. Nucleic Acids Res 43:D168–D173. doi:10.1093/nar/gku988
Li JH, Liu S, Zhou H et al (2014) StarBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res 42:92–97. doi:10.1093/nar/gkt1248
Yang JH, Li JH, Shao P et al (2011) StarBase: a database for exploring microRNA-mRNA interaction maps from Argonaute CLIP-Seq and Degradome-Seq data. Nucleic Acids Res 39:202–209. doi:10.1093/nar/gkq1056
Jeggari A, Marks DS, Larsson E (2012) miRcode: a map of putative microRNA target sites in the long non-coding transcriptome. Bioinformatics 28:2062–2063. doi:10.1093/bioinformatics/bts344
Agarwal V, Bell GW, Nam JW, Bartel DP (2015) Predicting effective microRNA target sites in mammalian mRNAs. Elife 4:1–38. doi:10.7554/eLife.05005
McLaren W, Gil L, Hunt SE et al (2016) The Ensembl variant effect predictor. Genome Biol 17:42374. doi:10.1101/042374
Zerbino DR, Johnson N, Juetteman T et al (2016) Ensembl regulation resources. Database 2016:1–13. doi:10.1093/database/bav119
Aken BL, Ayling S, Barrell D, et al (2016) The Ensembl gene annotation system. Database. 1–19. doi: 10.1093/database/baw093
Yang Y-CT, Di C, Hu B et al (2015) CLIPdb: a CLIP-seq database for protein-RNA interactions. BMC Genomics 16:51. doi:10.1186/s12864-015-1273-2
Hu B, Yang Y-CT, Huang Y et al (2016) POSTAR: a platform for exploring post-transcriptional regulation coordinated by RNA-binding proteinsgkw888. Nucleic Acids Res 45:D104–D114. doi:10.1093/nar/gkw888
Erhard F, Dölken L, Jaskiewicz L, Zimmer R (2013) PARma: identification of microRNA target sites in AGO-PAR-CLIP data. Genome Biol 14:R79. doi:10.1186/gb-2013-14-7-r79
Park C, Yu N, Choi I et al (2014) LncRNAtor: a comprehensive resource for functional investigation of long non-coding RNAs. Bioinformatics 30:2480–2485. doi:10.1093/bioinformatics/btu325
He S, Liu C, Skogerbø G et al (2008) NONCODE v2.0: decoding the non-coding. Nucleic Acids Res 36:2007–2009. doi:10.1093/nar/gkm1011
Liu C, Bai B, Skogerbø G et al (2005) NONCODE: an integrated knowledge database of non-coding RNAs. Nucleic Acids Res 33:112–115. doi:10.1093/nar/gki041
Das S, Ghosal S, Sen R, Chakrabarti J (2014) lnCeDB: database of human long non-coding RNA acting as competing endogenous RNA. PLoS One 9:e98965. doi:10.1371/journal.pone.0098965
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Jathar, S., Kumar, V., Srivastava, J., Tripathi, V. (2017). Technological Developments in lncRNA Biology. In: Rao, M. (eds) Long Non Coding RNA Biology. Advances in Experimental Medicine and Biology, vol 1008. Springer, Singapore. https://doi.org/10.1007/978-981-10-5203-3_10
Download citation
DOI: https://doi.org/10.1007/978-981-10-5203-3_10
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-10-5202-6
Online ISBN: 978-981-10-5203-3
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)