Skip to main content

Determining Oxidative Stress of Spermatozoa

  • Chapter
  • First Online:
Protocols in Semen Biology (Comparing Assays)
  • 783 Accesses

Abstract

Oxidative stress is triggered via numerous reactive oxygen species like peroxides, superoxide anions, nitric oxide, hydroxyl radical and singlet oxygen, which any biological cell/system is unable to counterbalance. In assisted reproductive technologies, the status of seminal oxidative stress can be significantly applied for diagnosing a malady along with prophylactic measures. Accurate oxidative stress measurement may help to develop strategies to reduce oxidative stress during extension and cryopreservation of bovine semen. The present chapter outlines different procedures of measuring oxidative stress in semen samples and their comparative analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literature Cited

  1. Agarwal A, Saleh RA, Bedaiwy MA (2003) Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil Steril 79:829–843

    Article  PubMed  Google Scholar 

  2. MacLeod J (1943) The role of oxygen in the metabolism and motility of human spermatozoa. Am J Phys 138:512–518

    CAS  Google Scholar 

  3. Tosic J, Walton A (1950) Metabolism of spermatozoa the formation and elimination of hydrogen peroxide by spermatozoa and effects on motility and survival. Biochem J 47:199–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Holland MK, Storey BT (1981) Oxygen metabolism of mammalian spermatozoa generation of hydrogen peroxide by rabbit epididymal spermatozoa. Biochem J 198:273–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Alvarez JG, Touchstone JC, Blasco L, Storey BT (1987) Spontaneous lipid peroxidation and production of hydrogen peroxide and superoxide in human spermatozoa: superoxide dismutase as major enzyme protectant against oxygen toxicity. J Androl 8:338–348

    Article  CAS  PubMed  Google Scholar 

  6. Aitken RJ, Clarkson JS (1987) Cellular basis of defective sperm function and its association with the genesis of reactive oxygen species by human spermatozoa. J Reprod Fertil 81:459–469

    Article  CAS  PubMed  Google Scholar 

  7. Kumar P, Laloraya M, Laloraya MM (1991) Superoxide radical level and superoxide-dismutase activity changes in maturing mammalian spermatozoa. Andrologia 23:171–175

    CAS  PubMed  Google Scholar 

  8. Aitken RJ, Paterson M, Fisher H, Buckingham DW, Vanduin M (1995) Redox regulation of tyrosine phosphorylation in human spermatozoa and its role in the control of human sperm function. J Cell Sci 108:2017–2025

    CAS  PubMed  Google Scholar 

  9. de Lamirande E, Gagnon C (1998) Paradoxical effect of reagents for sulfhydryl and disulfide groups on human sperm capacitation and superoxide production. Free Rad Biol Med 25:803–817

    Article  PubMed  Google Scholar 

  10. Aitken RJ, Wingate JK, De Iuliis GN, Koppers AJ, McLaughlin EA (2006) Cis-unsaturated fatty acids stimulate reactive oxygen species generation and lipid peroxidation in human spermatozoa. J Clin Endocrinol Metab 91:4154–4163

    Article  CAS  PubMed  Google Scholar 

  11. Bromfield JJ (2014) Seminal fluid and reproduction: much more than previously thought. J Assist Reprod Genet 31:627–636

    Article  PubMed  PubMed Central  Google Scholar 

  12. O’Flaherty C (2014) Peroxiredoxins: hidden players in the antioxidant defence of human spermatozoa. Basic Clin Androl 24:4

    Article  PubMed  PubMed Central  Google Scholar 

  13. Baumber J, Ball BA, Gravance CG, Medina V, Davies-Morel MCG (2000) The effect of reactive oxygen species on equine sperm motility, viability, acrosomal integrity, mitochondrial membrane potential and membrane lipid peroxidation. J Androl 21:895–902

    CAS  PubMed  Google Scholar 

  14. Morte MI, Rodrigues AM, Soares D, Rodrigues AS, Gamboa S, Ramalho-Santos J (2008) The quantification of lipid and protein oxidation in stallion spermatozoa and seminal plasma: seasonal distinctions and correlations with DNA strand breaks, classical seminal parameters and stallion fertility. Anim Reprod Sci 106:36–47

    Article  CAS  PubMed  Google Scholar 

  15. Aitken RJ, Clarkson JS, Fishel S (1989) Generation of reactive oxygen species, lipid peroxidation, and human sperm function. Biol Reprod 41:183–197

    Article  CAS  PubMed  Google Scholar 

  16. Mammoto A, Masumoto N, Tahara M, Ikebuchi Y, Ohmichi M, Tasaka K, Miyake A (1996) Reactive oxygen species block sperm egg fusion via oxidation of sperm sulfhydryl proteins in mice. Biol Reprod 55:1063–1068

    Article  CAS  PubMed  Google Scholar 

  17. Guthrie HD, Welch GR (2006) Determination of intracellular reactive oxygen species and high mitochondrial membrane potential in Percoll-treated viable boar sperm using fluorescence-activated flow cytometry. J Anim Sci 84:2089–2100

    Article  CAS  PubMed  Google Scholar 

  18. Ahmad M, Ahmad N, Riaz A, Anzar M (2015) Sperm survival kinetics in different types of bull semen: progressive motility, plasma membrane integrity, acrosomal status and reactive oxygen species generation. Reprod Fertil Dev 27:784–793

    Article  CAS  PubMed  Google Scholar 

  19. Lewis SE, Aitken RJ (2005) DNA damage to spermatozoa has impacts on fertilization and pregnancy. Cell Tissue Res 322:33–41

    Article  CAS  PubMed  Google Scholar 

  20. Simoes R, Feitosa WB, Siqueira AF, Nichi M, Paula-Lopes FF, Marques MG, Peres MA, Barnabe VH, Visintin JA, Assumpçao ME (2013) Influence of bovine sperm DNA fragmentation and oxidative stress on early embryo in vitro development outcome. Reproduction 146:433–441

    Article  CAS  PubMed  Google Scholar 

  21. Said TM, Agarwal A, Sharma RK, Thomas AJ Jr, Sikka SC (2005) Impact of sperm morphology on DNA damage caused by oxidative stress induced by beta-nicotinamide adenine dinucleotide phosphate. Fertil Steril 83:95–103

    Article  CAS  PubMed  Google Scholar 

  22. Cocuzza M, Sikka S, Athayde K, Agarwal A (2007) Clinical relevance of oxidative stress and sperm chromatin damage in male infertility: an evidence based analysis. Int Braz J Urol 33:603–621

    Article  PubMed  Google Scholar 

  23. Sikka SC (2004) Role of oxidative stress and antioxidants in andrology and assisted reproductive technology. J Androl 25:5–18

    Article  CAS  PubMed  Google Scholar 

  24. Agarwal A, Ikemoto I, Loughlin KR (1994) Effect of sperm washing on levels of reactive oxygen species in semen. Arch Androl 33:157–162

    Article  CAS  PubMed  Google Scholar 

  25. Allamaneni SS, Agarwal A, Nallella KP, Sharma RK, Thomas AJ, Sikka SC (2005) Characterization of oxidative stress status by evaluation of reactive oxygen species levels in whole semen and isolated spermatozoa. Fertil Steril 83:800–803

    Article  CAS  PubMed  Google Scholar 

  26. Moein MR, Dehghani VO, Tabibnejad N, Vahidi S (2007) Reactive oxygen species (ROS) level in seminal plasma of infertile men and healthy donors. Iran J Reprod Med 5:51–55

    Google Scholar 

  27. Sharma RK, Agarwal A (1996) Role of reactive oxygen species in male infertility. Urology 48:835–850

    Article  CAS  PubMed  Google Scholar 

  28. Agarwal A, Allamaneni SS, Said TM (2004) Chemiluminescence technique for measuring reactive oxygen species. Reprod Biomed Online 9:466–468

    Article  CAS  PubMed  Google Scholar 

  29. Esfandiari N, Sharma RK, Saleh RA, Thomas AJ Jr, Agarwal A (2003) Utility of the nitroblue tetrazolium reduction test for assessment of reactive oxygen species production by seminal leukocytes and spermatozoa. J Androl 24:862–870

    Article  CAS  PubMed  Google Scholar 

  30. Mahfouz R, Sharma R, Lackner J, Aziz N, Agarwal A (2009) Evaluation of chemiluminescence and flow cytometry as tools in assessing production of hydrogen peroxide and superoxide anion in human spermatozoa. Fertil Steril 92:819–827

    Article  CAS  PubMed  Google Scholar 

  31. Shekarriz M, Thomas AJ, Agarwal A (1995) Incidence and level of seminal reactive oxygen species in normal men. Urology 45:103–107

    Article  CAS  PubMed  Google Scholar 

  32. Weber GF (1990) The measurement of oxygen-derived free radicals and related substances in medicine. J Clin Chem Clin Biochem 28:569–603

    CAS  PubMed  Google Scholar 

  33. Buettner GR (1987) Spin trapping: ESR parameters of spin adducts. Free Radic Biol Med 3:259–303

    Article  CAS  PubMed  Google Scholar 

  34. Sharma R, Pasqualotto F, Nelson D, Thomas A Jr, Agarwal A (1999) The reactive oxygen species-total antioxidant capacity score is a new measure of oxidative stress to predict male infertility. Hum Reprod 14:2801–2807

    Article  CAS  PubMed  Google Scholar 

  35. Erel O (2005) A new automated colorimetric method for measuring total oxidant status. Clin Biochem 38:1103–1111

    Article  CAS  PubMed  Google Scholar 

  36. Agarwal A, Deepinder F 2009 In: Larry I Lipshultz, Stuart S Howards, Craig S Niederberger (eds) Infertility in the male, 4th edn. Cambridge University Press, Cambridge/New York

    Google Scholar 

  37. Kashou AH, Sharma R, Agarwal A (2013) Assessment of oxidative stress in sperm and semen. Methods Mol Biol 927:351–361

    Article  CAS  PubMed  Google Scholar 

  38. Tvrda E, Kováčik A, Tušimová E, Paál D, Mackovich A, Alimov J, Lukáč N (2016) Antioxidant efficiency of lycopene on oxidative stress - induced damage in bovine spermatozoa. J Anim Sci Biotechnol 7:50

    Article  PubMed  PubMed Central  Google Scholar 

  39. Dikalov KKG, David GH (2007) Measurement of reactive oxygen species in cardiovascular studies. Hypertension 49:717–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang H, Joseph JA (1999) Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med 27:612–616

    Article  CAS  PubMed  Google Scholar 

  41. Owusu-Ansah E, Yavari A, Banerjee U (2008) A protocol for in vivo detection of reactive oxygen species. doi:10.1038/nprot.2008.23

  42. Robinson KM, Janes MS, Pehar M, Monette JS, Ross MF, Hagen TM, Murphy MP, Beckman JS (2006) Selective fluorescent imaging of superoxide in vivo using ethidium-based probes. Proc Natl Acad Sci 103:15038–15043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kolettis PN, Sharma RK, Pasqualotto FF, Nelson D, Thomas AJ Jr, Agarwal A (1999) Effect of seminal oxidative stress on fertility after vasectomy reversal. Fertil Steril 71:249–255

    Article  CAS  PubMed  Google Scholar 

  44. Nichi M, Goovaerts IGF, Cortada CNM, Barnabe VH, De Clercq JBP, Bols PEJ (2007) Roles of lipid peroxidation and cytoplasmic droplets on in vitrofertilization capacity of sperm collected from bovine epididymides stored at 4 and 34 degrees C. Theriogenology 67:334–340

    Article  CAS  PubMed  Google Scholar 

  45. Lloyd DR, Phillips DH (1999) Oxidative DNA damage mediated by copper(II), iron(II) and nickel(II) fen-ton reactions: evidence for site-specific mechanisms in the formation of double-strand breaks, 8-hydroxy-deoxyguanosine and putative intrastrand cross-links. Mutat Res 424:23–36

    Article  CAS  PubMed  Google Scholar 

  46. Buege J, Aust SD (1987) In: Colowick SP, Kaplan NO (eds) Methods in enzymology. Academic, New York, 1978. Microsomal lipid peroxidation, pp 302–311

    Google Scholar 

  47. Colagar AH, Pouramir M, Marzony ET, Jorsaraei SGA (2009) Relationship between seminal malondialdehyde levels and sperm quality in fertile and infertile men. Braz Arch Bioltechnol 52:1387–1392

    Article  CAS  Google Scholar 

  48. Sanocka D, Kurpisz M (2004) Reactive oxygen species and sperm cells. ReprodBiolEndocrinol 2:12

    Google Scholar 

  49. Madesh M, Balasubramanian AK (1998) Microtiter plate assay for SOD using MTT reduction by superoxide. Indian J Biochem Biophys 35:184–188

    CAS  PubMed  Google Scholar 

  50. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  51. Hafeman DG, Sunde RA, Hoekstra WG (1974) Effect of dietary selenium on erythrocyte and liver glutathione peroxidase in the rat. J Nutr 104:580–587

    CAS  PubMed  Google Scholar 

  52. Beutler E, Duron O, Kelly BM (1963) Improved method for the determination of blood glutathione. J Lab Clin Med 61:882–888

    CAS  PubMed  Google Scholar 

  53. Cadenas E, Davies KJ (2000) Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med 29:222–230

    Article  CAS  PubMed  Google Scholar 

Key Reference

  1. Sanocka and Kurpisz, 2004. See above [48] Provides useful information about interplay among various reactive oxygen species and sperm cells.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Megha Pande .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Pande, M., Srivastava, N. (2017). Determining Oxidative Stress of Spermatozoa. In: Srivastava, N., Pande, M. (eds) Protocols in Semen Biology (Comparing Assays). Springer, Singapore. https://doi.org/10.1007/978-981-10-5200-2_12

Download citation

Publish with us

Policies and ethics