Skip to main content

Application of Nanoseparation in Reaction Mechanism Analysis

  • Chapter
  • First Online:
Nanoseparation Using Density Gradient Ultracentrifugation

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMOLECULAR))

  • 630 Accesses

Abstract

Density gradient centrifugation has been established to obtain monodisperse nanoparticles with strictly uniform size and morphology, which are usually hard to be obtained by synthetic optimization. Previous chapters have demonstrated the versatility and universality of such separation method, by which nearly all kinds of nanostructures can be separated, including particles, clusters, and assemblies. Further, reaction mechanism, as well as structure–property relationship, can also be investigated based on the separated fractions. The focus of this chapter is the reaction mechanism analysis using density gradient centrifugation, namely by introducing a distinctive functional gradient layer, such as reaction zone and assembly zone, reaction mechanisms can be therefore studied since the reaction time can be pre-designed and the reaction environment can be switched extremely fast in a centrifugal force field. In a word, “lab in a tube” based on nanoseparation opens a new door for the investigation of synthetic optimization, assembly behavior, and surface reaction of various nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Duan R, Zuo X, Wang S et al (2013) Lab in a tube: ultrasensitive detection of microRNAs at the single-cell level and in breast cancer patients using quadratic isothermal amplification. J Am Chem Soc 135(12):4604–4607

    Article  CAS  Google Scholar 

  2. Smith EJ, Schulze S, Kiravittaya S et al (2010) Lab-in-a-tube: detection of individual mouse cells for analysis in flexible split-wall microtube resonator sensors. Nano Lett 11(10):4037–4042

    Article  CAS  Google Scholar 

  3. Harazim SM, Quiñones VAB, Kiravittaya S et al (2012) Lab-in-a-tube: on-chip integration of glass optofluidic ring resonators for label-free sensing applications. Lab Chip 12(15):2649–2655

    Article  CAS  Google Scholar 

  4. Zhang C, Luo L, Luo J et al (2012) A process-analysis microsystem based on density gradient centrifugation and its application in the study of the galvanic replacement mechanism of Ag nanoplates with HAuCl4. Chem Commun 48(58):7241–7243

    Article  CAS  Google Scholar 

  5. Liu C, Fan Y, Liu M et al (1999) Hydrogen storage in single-walled carbon nanotubes at room temperature. Science 286(5442):1127–1129

    Article  CAS  Google Scholar 

  6. Odom TW, Huang J-L, Kim P et al (1998) Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 391(6662):62–64

    Article  CAS  Google Scholar 

  7. Bachilo SM, Strano MS, Kittrell C et al (2002) Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298(5602):2361–2366

    Article  CAS  Google Scholar 

  8. Sun X, Zaric S, Daranciang D et al (2008) Optical properties of ultrashort semiconducting single-walled carbon nanotube capsules down to sub-10 nm. J Am Chem Soc 130(20):6551–6555

    Article  CAS  Google Scholar 

  9. Murray C, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc 115(19):8706–8715

    Article  CAS  Google Scholar 

  10. Bai L, Ma X, Liu J, Sun X et al (2010) Rapid separation and purification of nanoparticles in organic density gradients. J Am Chem Soc 132(7):2333–2337

    Article  CAS  Google Scholar 

  11. Ma X, Kuang Y, Bai L et al (2011) Experimental and mathematical modeling studies of the separation of zinc blende and wurtzite phases of CdS nanorods by density gradient ultracentrifugation. ACS Nano 5(4):3242–3249

    Article  CAS  Google Scholar 

  12. Zhang G, He P, Ma X et al (2012) Understanding the “Tailoring Synthesis” of CdS nanorods by O2. Inorg Chem 51(3):1302–1308

    Article  CAS  Google Scholar 

  13. Sun X, Ma X, Bai L et al (2011) Nanoseparation-inspired manipulation of the synthesis of CdS nanorods. Nano Res 4(2):226–232

    Article  CAS  Google Scholar 

  14. Song S, Kuang Y, Liu J et al (2013) Separation and phase transition investigation of Yb 3 +/Er 3 + co-doped NaYF4 nanoparticles. Dalton T 42(37):13315–13318

    Article  CAS  Google Scholar 

  15. Chatterjee D, Deutschmann O, Warnatz J (2002) Detailed surface reaction mechanism in a three-way catalyst. Faraday Discuss 119:371–384

    Article  CAS  Google Scholar 

  16. Long R, Yang R (2002) Reaction mechanism of selective catalytic reduction of NO with NH3 over Fe–ZSM-5 catalyst. J Catal 207(2):224–231

    Article  CAS  Google Scholar 

  17. Koop J, Deutschmann O (2009) Detailed surface reaction mechanism for Pt-catalyzed abatement of automotive exhaust gases. Appl Catal B Environ 91(1):47–58

    Article  CAS  Google Scholar 

  18. Chen G, Wang Y, Yang M et al (2010) Measuring ensemble-averaged surface-enhanced Raman scattering in the hotspots of colloidal nanoparticle dimers and trimers. J Am Chem Soc 132(11):3644–3645

    Article  CAS  Google Scholar 

  19. Urban AS, Shen X, Wang Y et al (2013) Three-dimensional plasmonic nanoclusters. Nano Lett 13(9):4399–4403

    Article  CAS  Google Scholar 

  20. Qi X, Li M, Kuang Y et al (2015) Controllable assembly and separation of colloidal nanoparticles through a one-tube synthesis based on density gradient centrifugation. Chem Eur J 21(19):7211–7216

    Article  CAS  Google Scholar 

  21. Song S, Kuang Y, Luo L et al (2014) Asymmetric hetero-assembly of colloidal nanoparticles through “crash reaction” in a centrifugal field. Dalton Trans 43(16):5994–5997

    Article  CAS  Google Scholar 

  22. Kuang Y, Song S, Liu X et al (2014) Solvent switching and purification of colloidal nanoparticles through water/oil Interfaces within a density gradient. Nano Res 7(11):1670–1679

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cai, Z., Qi, X., Kuang, Y., Zhang, Q. (2018). Application of Nanoseparation in Reaction Mechanism Analysis. In: Nanoseparation Using Density Gradient Ultracentrifugation. SpringerBriefs in Molecular Science. Springer, Singapore. https://doi.org/10.1007/978-981-10-5190-6_6

Download citation

Publish with us

Policies and ethics