Strategies for Tackling Drug Resistance in Tuberculosis

  • Laurent MaveyraudEmail author


Tuberculosis still represents a serious threat to mankind, although drugs exist for more than 50 years to cure the disease. Indeed, TB killed 1.8 million people last year, ranking first as the most fatal infectious disease. This alarming situation results not only from coinfection with HIV but also from the emergence and the continuous evolution of drug-resistant strains of Mycobacterium tuberculosis: there are cases where no available drugs are able to cure the disease. A review of the drugs currently used, as well as those being developed, is proposed. Some of the strategies pursued for tackling drug resistance are also presented, illustrated with examples issued from the latest literature.


  1. 1.
    World Health Organization (2016) Global tuberculosis report—2016. WHO LibraryGoogle Scholar
  2. 2.
    Delogu G, Sali M, Fadda G (2013) The biology of Mycobacterium tuberculosis infection. Mediterr J Hematol Infect Dis 5:e2013070. doi: 10.4084/MJHID.2013.070 PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Dheda K, Barry C, Maartens G (2016) Tuberculosis. Lancet 387:1211–1226. doi: 10.1016/S0140-6736(15)00151-8 PubMedCrossRefGoogle Scholar
  4. 4.
    Velayati A, Masjedi M, Farnia P et al (2009) Emergence of new forms of totally drug-resistant tuberculosis bacilli super extensively drug-resistant tuberculosis or totally drug-resistant strains in Iran. Chest 136:420–425. doi: 10.1378/chest.08-2427 PubMedCrossRefGoogle Scholar
  5. 5.
    Velayati AA, Farnia P, Masjedi MR et al (2009) Totally drug-resistant tuberculosis strains: evidence of adaptation at the cellular level. Eur Respir J 34:1202–1203. doi: 10.1183/09031936.00081909 PubMedCrossRefGoogle Scholar
  6. 6.
    Cegielski P, Nunn P, Kurbatova E et al (2012) Challenges and controversies in defining totally drug-resistant tuberculosis. Emerg Infect Dis 18:e2–e2. doi: 10.3201/eid1811.120526 PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Velayati A, Farnia P, Masjedi M (2013) Totally drug-resistant tuberculosis (TDR-TB): a debate on global health communities. Int J Mycobacteriol 2:71–72. doi: 10.1016/j.ijmyco.2013.04.005 PubMedCrossRefGoogle Scholar
  8. 8.
    TBdrugs 1.0—Database of drugs for tuberculosis (version 1.0). or Accessed 24 Mar 2017
  9. 9.
    World Health Organization (2016) Treatment guidelines for drug-resistant tuberculosis—2016 update. WHO LibraryGoogle Scholar
  10. 10.
    Andries K, Verhasselt P, Guillemont J et al (2005) A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 307:223–227. doi: 10.1126/science.1106753 PubMedCrossRefGoogle Scholar
  11. 11.
    Preiss L, Langer J, Yildiz Ö et al (2015) Structure of the mycobacterial ATP synthase Fo rotor ring in complex with the anti-TB drug bedaquiline. Sci Adv 1:e1500106. doi: 10.1126/sciadv.1500106 PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Zheng J, Rubin E, Bifani P et al (2013) Para-aminosalicylic acid is a prodrug targeting dihydrofolate reductase in Mycobacterium tuberculosis. J Biol Chem 288:23447–23456. doi: 10.1074/jbc.M113.475798 PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Islam M, Hameed HM, Mugweru J et al (2017) Drug resistance mechanisms and novel drug targets for tuberculosis therapy. J Genet Genomics 44:21–37. doi: 10.1016/j.jgg.2016.10.002 PubMedCrossRefGoogle Scholar
  14. 14.
    Migliori G, Iaco DG, Besozzi G et al (2007) First tuberculosis cases in Italy resistant to all tested drugs. Euro surveillance: European communicable disease bulletin 12:E070517.1.Google Scholar
  15. 15.
    Udwadia ZF, Amale RA, Ajbani KK, Rodrigues C (2012) Totally drug-resistant tuberculosis in India. Clin Infect Dis 54:579–581. doi: 10.1093/cid/cir889 PubMedCrossRefGoogle Scholar
  16. 16.
    Velayati A, Farnia P, Masjedi M (2012) Pili in totally drug resistant Mycobacterium tuberculosis (TDR-TB). Int J Mycobacteriol 1:57–58. doi: 10.1016/j.ijmyco.2012.04.002 PubMedCrossRefGoogle Scholar
  17. 17.
    Silva P, Palomino J (2011) Molecular basis and mechanisms of drug resistance in Mycobacterium tuberculosis: classical and new drugs. J Antimicrob Chemother 66:1417–1430. doi: 10.1093/jac/dkr173 CrossRefGoogle Scholar
  18. 18.
    Bernardes-Génisson V, Deraeve C, Chollet A et al (2013) Isoniazid: an update on the multiple mechanisms for a singular action. Curr Med Chem 20:4370–4385. doi: 10.2174/15672050113109990203 PubMedCrossRefGoogle Scholar
  19. 19.
    Wang F, Langley R, Gulten G et al (2007) Mechanism of thioamide drug action against tuberculosis and leprosy. J Exp Med 204:73–78. doi: 10.1084/jem.20062100 PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Grzegorzewicz AE, Eynard N, Quémard A et al (2015) Covalent modification of the FAS-II dehydratase by isoxyl and thiacetazone. ACS Infect Dis 1:91–97. doi: 10.1021/id500032q PubMedCrossRefGoogle Scholar
  21. 21.
    Mathys V, Wintjens R, Lefevre P et al (2009) Molecular genetics of para-aminosalicylic acid resistance in clinical isolates and spontaneous mutants of Mycobacterium tuberculosis. Antimicrob Agents Chemother 53:2100–2109. doi: 10.1128/AAC.01197-08 PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Via LE, Savic R, Weiner DM et al (2015) Host-mediated bioactivation of pyrazinamide: implications for efficacy, resistance, and therapeutic alternatives. ACS Infect Dis 1:203–214. doi: 10.1021/id500028m PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Ramirez-Busby S, Valafar F (2015) Systematic review of mutations in pyrazinamidase associated with pyrazinamide resistance in Mycobacterium tuberculosis clinical isolates. Antimicrob Agents Chemother 59:5267–5277. doi: 10.1128/AAC.00204-15 PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Zimhony O, Cox JS, Welch JT et al (2000) Pyrazinamide inhibits the eukaryotic-like fatty acid synthetase I (FASI) of Mycobacterium tuberculosis. Nat Med 6:1043–1047. doi: 10.1038/79558 PubMedCrossRefGoogle Scholar
  25. 25.
    Kim H, Shibayama K, Rimbara E, Mori S (2014) Biochemical characterization of quinolinic acid phosphoribosyltransferase from Mycobacterium tuberculosis H37Rv and inhibition of its activity by pyrazinamide. PLoS One 9:e100062. doi: 10.1371/journal.pone.0100062 PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Zhang Y, Wade MM, Scorpio A et al (2003) Mode of action of pyrazinamide: disruption of Mycobacterium tuberculosis membrane transport and energetics by pyrazinoic acid. J Antimicrob Chemother 52:790–795. doi: 10.1093/jac/dkg446 PubMedCrossRefGoogle Scholar
  27. 27.
    Ali A, Hasan R, Jabeen K et al (2011) Characterization of mutations conferring extensive drug resistance to Mycobacterium tuberculosis isolates in Pakistan. Antimicrob Agents Chemother 55:5654–5659. doi: 10.1128/AAC.05101-11 PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Rosales-Klintz S, Jureen P, Zalutskayae A et al (2012) Drug resistance-related mutations in multidrug-resistant Mycobacterium tuberculosis isolates from diverse geographical regions. Int J Mycobacteriol 1:124–130. doi: 10.1016/j.ijmyco.2012.08.001 PubMedCrossRefGoogle Scholar
  29. 29.
    Thakur C, Kumar V, Gupta A (2015) Detecting mutation pattern of drug-resistant Mycobacterium tuberculosis isolates in Himachal Pradesh using GenoType® MTBDRplus assay. Indian J Med Microbiol 33:547–553. doi: 10.4103/0255-0857.167336 PubMedCrossRefGoogle Scholar
  30. 30.
    Vilchèze C, Jacobs WR (2014) Resistance to isoniazid and ethionamide in Mycobacterium tuberculosis: genes, mutations, and causalities. Microbiol Spectr 2. doi: 10.1128/microbiolspec.MGM2-0014-2013
  31. 31.
    Scorpio A, Zhang Y (1996) Mutations in pncA, a gene encoding pyrazinamidase/nicotinamidase, cause resistance to the antituberculous drug pyrazinamide in tubercle bacillus. Nat Med 2:662–667PubMedCrossRefGoogle Scholar
  32. 32.
    Njire M, Tan Y, Mugweru J et al (2016) Pyrazinamide resistance in Mycobacterium tuberculosis: review and update. Adv Med Sci 61:63–71. doi: 10.1016/j.advms.2015.09.007 PubMedCrossRefGoogle Scholar
  33. 33.
    Zhang S, Chen J, Shi W et al (2013) Mutations in panD encoding aspartate decarboxylase are associated with pyrazinamide resistance in Mycobacterium tuberculosis. Emerg Microbes Infect 2:e34. doi: 10.1038/emi.2013.38 PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Rengarajan J, Sassetti CM, Naroditskaya V et al (2004) The folate pathway is a target for resistance to the drug para-aminosalicylic acid (PAS) in mycobacteria. Mol Microbiol 53:275–282. doi: 10.1111/j.1365-2958.2004.04120.x PubMedCrossRefGoogle Scholar
  35. 35.
    Cheng Y-SS, Sacchettini JC (2016) Structural insights into Mycobacterium tuberculosis Rv2671 protein as a dihydrofolate reductase functional analogue contributing to para-aminosalicylic acid resistance. Biochemistry 55:1107–1119. doi: 10.1021/acs.biochem.5b00993 PubMedCrossRefGoogle Scholar
  36. 36.
    Goldstein BP (2014) Resistance to rifampicin: a review. J Antibiot 67:625–630. doi: 10.1038/ja.2014.107 PubMedCrossRefGoogle Scholar
  37. 37.
    Maruri F, Sterling TR, Kaiga AW et al (2012) A systematic review of gyrase mutations associated with fluoroquinolone-resistant Mycobacterium tuberculosis and a proposed gyrase numbering system. J Antimicrob Chemother 67:819–831. doi: 10.1093/jac/dkr566 PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Telenti A, Philipp WJ, Sreevatsan S et al (1997) The emb operon, a gene cluster of Mycobacterium tuberculosis involved in resistance to ethambutol. Nat Med 3:567–570PubMedCrossRefGoogle Scholar
  39. 39.
    Cooksey RC, Morlock GP, McQueen A et al (1996) Characterization of streptomycin resistance mechanisms among Mycobacterium tuberculosis isolates from patients in New York City. Antimicrob Agents Chemother 40:1186–1188PubMedPubMedCentralGoogle Scholar
  40. 40.
    Villellas C, Coeck N, Meehan C et al (2016) Unexpected high prevalence of resistance-associated Rv0678 variants in MDR-TB patients without documented prior use of clofazimine or bedaquiline. J Antimicrob Chemother 72:684–690. doi: 10.1093/jac/dkw502 PubMedCentralGoogle Scholar
  41. 41.
    TBAlliance (2016) Phase 1 Clinical Trial of TB Drug Candidate TBA-354 discontinued. Accessed 24 Mar 2017
  42. 42.
    NewTBDrugs (2016) AZD5847. Accessed 24 Mar 2017
  43. 43.
    ClinicalTrials (1993) A service of the U.S. National Institute of Health. Accessed 24 Mar 2017
  44. 44.
    NewTBDrugs (2016) Working Group on new TB drugs—StopTBPartnership. Accessed 24 Mar 2017
  45. 45.
    TBAlliance. Accessed 24 Mar 2017
  46. 46.
    Manjunatha U, Boshoff HIM, Barry CE (2009) The mechanism of action of PA-824. Novel insights from transcriptional profiling. Commun Integr Biol 2:215–218. doi: 10.1126/science.1164571 PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Pethe K, Bifani P, Jang J et al (2013) Discovery of Q203, a potent clinical candidate for the treatment of tuberculosis. Nat Med 19:1157–1160. doi: 10.1038/nm.3262 PubMedCrossRefGoogle Scholar
  48. 48.
    Makarov V, Lechartier B, Zhang M et al (2014) Towards a new combination therapy for tuberculosis with next generation benzothiazinones. EMBO Mol Med 6:372–383. doi: 10.1002/emmm.201303575 PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Clayden P et al (2016) Pipeline report—HIV & TB, 2016. HIV i-Base and Treatment Action GroupGoogle Scholar
  50. 50.
    Bush K, Bradford PA (2016) β-lactams and β-lactamase inhibitors: an overview. Cold Spring Harb Perspect Med. doi: 10.1101/cshperspect.a025247
  51. 51.
    DiMasi J, Grabowski H, Hansen R (2016) Innovation in the pharmaceutical industry: new estimates of R&D costs. J Health Econ 47:20–33. doi: 10.1016/j.jhealeco.2016.01.012 PubMedCrossRefGoogle Scholar
  52. 52.
    Koul A, Dendouga N, Vergauwen K et al (2007) Diarylquinolines target subunit c of mycobacterial ATP synthase. Nat Chem Biol 3:323–324. doi: 10.1038/nchembio884 PubMedCrossRefGoogle Scholar
  53. 53.
    Bloemberg GV, Keller PM, Stucki D et al (2015) Acquired resistance to bedaquiline and delamanid in therapy for tuberculosis. N Engl J Med 373:1986–1988. doi: 10.1056/NEJMc1505196 PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Lynch J, Szumowski J (2015) Profile of delamanid for the treatment of multidrug-resistant tuberculosis. Drug Des Devel Ther 9:677–682. doi: 10.2147/DDDT.S60923 PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Cole ST, Brosch R, Parkhill J et al (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–344. doi: 10.1038/31159 PubMedCrossRefGoogle Scholar
  56. 56.
    Koul A, Arnoult E, Lounis N et al (2011) The challenge of new drug discovery for tuberculosis. Nature 469:483–490. doi: 10.1038/nature09657 PubMedCrossRefGoogle Scholar
  57. 57.
    Lechartier B, Rybniker J, Zumla A, Cole S (2014) Tuberculosis drug discovery in the post-post-genomic era. EMBO Mol Med 6:158–168. doi: 10.1002/emmm.201201772 PubMedPubMedCentralGoogle Scholar
  58. 58.
    Payne D, Gwynn M, Holmes D, Pompliano D (2006) Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Discov 6:29–40. doi: 10.1038/nrd2201 PubMedCrossRefGoogle Scholar
  59. 59.
    Banerjee A, Dubnau E, Quémard A et al (1994) inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 263:227–230PubMedCrossRefGoogle Scholar
  60. 60.
    Chollet A, Mourey L, Lherbet C et al (2015) Crystal structure of the enoyl-ACP reductase of Mycobacterium tuberculosis (InhA) in the apo-form and in complex with the active metabolite of isoniazid pre-formed by a biomimetic approach. J Struct Biol 190:328–337. doi: 10.1016/j.jsb.2015.04.008 PubMedCrossRefGoogle Scholar
  61. 61.
    Dessen A, Quémard A, Blanchard JS et al (1995) Crystal structure and function of the isoniazid target of Mycobacterium tuberculosis. Science 267:1638–1641PubMedCrossRefGoogle Scholar
  62. 62.
    Ballell-Pages L, Castro-Pichel J, Fernandez Menendez R et al. (2009) (pyrazol-3-yl)-1, 3, 4-thiadiazol-2-amine and (pyrazol-3-yl)-1, 3, 4-thiazol-2-amine compounds. Patent WO 2010/118852 A1Google Scholar
  63. 63.
    Shirude P, Madhavapeddi P, Naik M et al (2013) Methyl-thiazoles: a novel mode of inhibition with the potential to develop novel inhibitors targeting InhA in Mycobacterium tuberculosis. J Med Chem 56:8533–8542. doi: 10.1021/jm4012033 PubMedCrossRefGoogle Scholar
  64. 64.
    Šink R, Sosič I, Živec M et al (2015) Design, synthesis, and evaluation of new thiadiazole-based direct inhibitors of enoyl acyl carrier protein reductase (InhA) for the treatment of tuberculosis. J Med Chem 58:613–624. doi: 10.1021/jm501029r PubMedCrossRefGoogle Scholar
  65. 65.
    Baulard A, Betts J, Engohang-Ndong J et al (2000) Activation of the pro-drug ethionamide is regulated in mycobacteria. J Biol Chem 275:28326–28331. doi: 10.1074/jbc.M003744200 PubMedGoogle Scholar
  66. 66.
    Frénois F, Engohang-Ndong J, Locht C et al (2004) Structure of EthR in a ligand bound conformation reveals therapeutic perspectives against tuberculosis. Mol Cell 16:301–307. doi: 10.1016/j.molcel.2004.09.020 PubMedCrossRefGoogle Scholar
  67. 67.
    Willand N, Dirié B, Carette X et al (2009) Synthetic EthR inhibitors boost antituberculous activity of ethionamide. Nat Med 15:537–544. doi: 10.1038/nm.1950 PubMedCrossRefGoogle Scholar
  68. 68.
    Engohang-Ndong J (2012) Antimycobacterial drugs currently in phase II clinical trials and preclinical phase for tuberculosis treatment. Expert Opin Investig Drugs 21:1789–1800. doi: 10.1517/13543784.2012.724397 PubMedCrossRefGoogle Scholar
  69. 69.
    Villemagne B, Crauste C, Flipo M et al (2012) Tuberculosis: the drug development pipeline at a glance. Eur J Med Chem 51:1–16. doi: 10.1016/j.ejmech.2012.02.033 PubMedCrossRefGoogle Scholar
  70. 70.
    Lorenz M, Fink G (2002) Life and death in a macrophage: role of the glyoxylate cycle in virulence. Eukaryot Cell 1:657–662. doi: 10.1128/EC.1.5.657-662.2002 PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    McKinney JD, Höner zu Bentrup K, Muñoz-Elías EJ et al (2000) Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406:735–738. doi: 10.1038/35021074 PubMedCrossRefGoogle Scholar
  72. 72.
    Kondrashov F, Koonin E, Morgunov I et al (2006) Evolution of glyoxylate cycle enzymes in Metazoa: evidence of multiple horizontal transfer events and pseudogene formation. Biol Direct 1:1–14. doi: 10.1186/1745-6150-1-31 CrossRefGoogle Scholar
  73. 73.
    Krátký M, Vinšová J, Novotná E et al (2013) Antibacterial activity of salicylanilide 4-(trifluoromethyl)-benzoates. Molecules 18:3674–3688. doi: 10.3390/molecules18043674 PubMedCrossRefGoogle Scholar
  74. 74.
    Smith CV, Huang CC, Miczak A et al (2003) Biochemical and structural studies of malate synthase from Mycobacterium tuberculosis. J Biol Chem 278:1735–1743. doi: 10.1074/jbc.M209248200 PubMedCrossRefGoogle Scholar
  75. 75.
    Krieger IV, Freundlich JS, Gawandi VB et al (2012) Structure-guided discovery of phenyl-diketo acids as potent inhibitors of M. tuberculosis malate synthase. Chem Biol 19:1556–1567. doi: 10.1016/j.chembiol.2012.09.018 PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Shuker SB, Hajduk PJ, Meadows RP, Fesik SW (1996) Discovering high-affinity ligands for proteins: SAR by NMR. Science 274:1531–1534PubMedCrossRefGoogle Scholar
  77. 77.
    Erlanson DA, Fesik SW, Hubbard RE et al (2016) Twenty years on: the impact of fragments on drug discovery. Nat Rev Drug Discov 15:605–619. doi: 10.1038/nrd.2016.109 PubMedCrossRefGoogle Scholar
  78. 78.
    Hung AW, Silvestre HL, Wen S et al (2009) Application of fragment growing and fragment linking to the discovery of inhibitors of Mycobacterium tuberculosis pantothenate synthetase. Angew Chem Int Ed Engl 48:8452–8456. doi: 10.1002/anie.200903821 PubMedCrossRefGoogle Scholar
  79. 79.
    Mendes V, Blundell TL (2017) Targeting tuberculosis using structure-guided fragment-based drug design. Drug Discov Today 22:546–554. doi: 10.1016/j.drudis.2016.10.003 PubMedCrossRefGoogle Scholar
  80. 80.
    Ioerger TR, O’Malley T, Liao R et al (2013) Identification of new drug targets and resistance mechanisms in Mycobacterium tuberculosis. PLoS One 8:e75245. doi: 10.1371/journal.pone.0075245 PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Gavalda S, Léger M, van der Rest B et al (2009) The Pks13/FadD32 crosstalk for the biosynthesis of mycolic acids in Mycobacterium tuberculosis. J Biol Chem 284:19255–19264. doi: 10.1074/jbc.m109.006940 PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Gavalda S, Bardou F, Laval F et al (2014) The polyketide synthase Pks13 catalyzes a novel mechanism of lipid transfer in mycobacteria. Chem Biol 21:1660–1669. doi: 10.1016/j.chembiol.2014.10.011 PubMedCrossRefGoogle Scholar
  83. 83.
    Portevin D, De Sousa-D’Auria C, Montrozier H et al (2005) The acyl-AMP ligase FadD32 and AccD4-containing acyl-CoA carboxylase are required for the synthesis of mycolic acids and essential for mycobacterial growth: identification of the carboxylation product and determination of the acyl-CoA carboxylase components. J Biol Chem 280:8862–8874PubMedCrossRefGoogle Scholar
  84. 84.
    Serafini A, Boldrin F, Palù G, Manganelli R (2009) Characterization of a Mycobacterium tuberculosis ESX-3 conditional mutant: essentiality and rescue by iron and zinc. J Bacteriol 191:6340–6344. doi: 10.1128/JB.00756-09 PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Siegrist MS, Unnikrishnan M, McConnell MJ et al (2009) Mycobacterial Esx-3 is required for mycobactin-mediated iron acquisition. Proc Natl Acad Sci U S A 106:18792–18797. doi: 10.1073/pnas.0900589106 PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Matsumoto M, Hashizume H, Tomishige T et al (2006) OPC-67683, a nitro-dihydro-imidazooxazole derivative with promising action against tuberculosis in vitro and in mice. PLoS Med 3:e466. doi: 10.1371/journal.pmed.0030466 PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Makarov V, Manina G, Mikusova K et al (2009) Benzothiazinones kill Mycobacterium tuberculosis by blocking arabinan synthesis. Science 324:801–804. doi: 10.1126/science.1171583 PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Abel R, Mondal S, Masse C et al (2016) Accelerating drug discovery through tight integration of expert molecular design and predictive scoring. Curr Opin Struct Biol 43:38–44. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  89. 89.
    Renaud J-PP, Chung C-WW, Danielson UH et al (2016) Biophysics in drug discovery: impact, challenges and opportunities. Nat Rev Drug Discov 15:679–698. doi: 10.1038/nrd.2016.123 PubMedCrossRefGoogle Scholar
  90. 90.
    Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46:3–26PubMedCrossRefGoogle Scholar
  91. 91.
    Fink T, Reymond J-LL (2007) Virtual exploration of the chemical universe up to 11 atoms of C, N, O, F: assembly of 26.4 million structures (110.9 million stereoisomers) and analysis for new ring systems, stereochemistry, physicochemical properties, compound classes, and drug discovery. J Chem Inf Model 47:342–353. doi: 10.1021/ci600423u PubMedCrossRefGoogle Scholar
  92. 92.
    Kinch MS, Haynesworth A, Kinch SL, Hoyer D (2014) An overview of FDA-approved new molecular entities: 1827-2013. Drug Discov Today 19:1033–1039. doi: 10.1016/j.drudis.2014.03.018 PubMedCrossRefGoogle Scholar
  93. 93.
    Huang R, Southall N, Wang Y et al (2011) The NCGC pharmaceutical collection: a comprehensive resource of clinically approved drugs enabling repurposing and chemical genomics. Sci Transl Med 3:80ps16. doi: 10.1126/scitranslmed.3001862 PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Ashburn TT, Thor KB (2004) Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov 3:673–683. doi: 10.1038/nrd1468 PubMedCrossRefGoogle Scholar
  95. 95.
    Ghofrani H, Osterloh I, Grimminger F (2006) Sildenafil: from angina to erectile dysfunction to pulmonary hypertension and beyond. Nat Rev Drug Discov 5:689–702. doi: 10.1038/nrd2030 PubMedCrossRefGoogle Scholar
  96. 96.
    Goldstein I, Lue TF, Padma-Nathan H et al (1998) Oral sildenafil in the treatment of erectile dysfunction. Sildenafil study group. N Engl J Med 338:1397–1404. doi: 10.1056/NEJM199805143382001 PubMedCrossRefGoogle Scholar
  97. 97.
    Prasad S, Wilkinson J, Gatzoulis MA (2000) Sildenafil in primary pulmonary hypertension. N Engl J Med 343:1342. doi: 10.1056/NEJM200011023431814 PubMedCrossRefGoogle Scholar
  98. 98.
    Kinnings SL, Xie L, Fung KH et al (2010) The Mycobacterium tuberculosis drugome and its polypharmacological implications. PLoS Comput Biol 6:e1000976. doi: 10.1371/journal.pcbi.1000976 PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Gillespie SH (2016) The role of moxifloxacin in tuberculosis therapy. Eur Respir Rev 25:19–28. doi: 10.1183/16000617.0085-2015 PubMedCrossRefGoogle Scholar
  100. 100.
    Tyagi S, Ammerman NC, Li S-YY et al (2015) Clofazimine shortens the duration of the first-line treatment regimen for experimental chemotherapy of tuberculosis. Proc Natl Acad Sci U S A 112:869–874. doi: 10.1073/pnas.1416951112 PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Sotgiu G, D’Ambrosio L, Centis R et al (2016) Carbapenems to treat multidrug and extensively drug-resistant tuberculosis: a systematic review. Int J Mol Sci 17:373. doi: 10.3390/ijms17030373 PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Novac N (2013) Challenges and opportunities of drug repositioning. Trends Pharmacol Sci 34:267–272. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  103. 103.
    Oprea T, Bauman J, Bologa C et al (2011) Drug repurposing from an academic perspective. Drug Discov Today Ther Strateg 8:61–69. doi: 10.1016/j.ddstr.2011.10.002 PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Protein Data Bank An information portal to biological macromolecular structures. Accessed 24 Mar 2017
  105. 105.
    Maeda K, Kosaka H, Okami Y, Umezawa H (1953) A new antibiotic, pyridomycin. J Antibiot 6:140PubMedGoogle Scholar
  106. 106.
    Hartkoorn RC, Pojer F, Read JA et al (2014) Pyridomycin bridges the NADH- and substrate-binding pockets of the enoyl reductase InhA. Nat Chem Biol 10:96–98. doi: 10.1038/nchembio.1405 PubMedCrossRefGoogle Scholar
  107. 107.
    Harvey A, Edrada-Ebel R, Quinn R (2015) The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov 14:111–129. doi: 10.1038/nrd4510 PubMedCrossRefGoogle Scholar
  108. 108.
    Quan D, Nagalingam G, Payne R, Triccas J (2017) New tuberculosis drug leads from naturally occurring compounds. Int J Infect Dis 56:212–220. doi: 10.1016/j.ijid.2016.12.024 PubMedCrossRefGoogle Scholar
  109. 109.
    Singh V, Mizrahi V (2016) Identification and validation of novel drug targets in Mycobacterium tuberculosis. Drug Discov Today 22:503–509. doi: 10.1016/j.drudis.2016.09.010 PubMedCrossRefGoogle Scholar
  110. 110.
    Mdluli K, Kaneko T, Upton A (2014) Tuberculosis drug discovery and emerging targets. Ann N Y Acad Sci 1323:56–75. doi: 10.1111/nyas.12459 PubMedCrossRefGoogle Scholar
  111. 111.
    Marrakchi H, Lanéelle M-AA, Daffé M (2014) Mycolic acids: structures, biosynthesis, and beyond. Chem Biol 21:67–85. doi: 10.1016/j.chembiol.2013.11.011 PubMedCrossRefGoogle Scholar
  112. 112.
    Portevin D, De Sousa-D’Auria C, Houssin C et al (2004) A polyketide synthase catalyzes the last condensation step of mycolic acid biosynthesis in mycobacteria and related organisms. Proc Natl Acad Sci U S A 101:314–319. doi: 10.1073/pnas.0305439101 PubMedCrossRefGoogle Scholar
  113. 113.
    Mdluli K, Slayden RA, Zhu Y et al (1998) Inhibition of a Mycobacterium tuberculosis beta-ketoacyl ACP synthase by isoniazid. Science 280:1607–1610PubMedCrossRefGoogle Scholar
  114. 114.
    Banerjee DI, Gohil TP (2016) Interaction of antimicrobial peptide with mycolyl transferase in Mycobacterium tuberculosis. Int J Mycobacteriol 5:83–88. doi: 10.1016/j.ijmyco.2015.07.002 PubMedCrossRefGoogle Scholar
  115. 115.
    North J, Jackson M, Lee R (2014) New approaches to target the mycolic acid biosynthesis pathway for the development of tuberculosis therapeutics. Curr Pharm Des 20:4357–4378. doi: 10.2174/1381612819666131118203641 PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Vaubourgeix J, Bardou F, Boissier F et al (2009) S-adenosyl-N-decyl-aminoethyl, a potent bisubstrate inhibitor of Mycobacterium tuberculosis mycolic acid methyltransferases. J Biol Chem 284:19321–19330. doi: 10.1074/jbc.m809599200 PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Galandrin S, Guillet V, Rane RS et al (2013) Assay development for identifying inhibitors of the mycobacterial FadD32 activity. J Biomol Screen 18:576–587. doi: 10.1177/1087057112474691 PubMedCrossRefGoogle Scholar
  118. 118.
    Mahapatra S, Scherman H, Brennan PJ, Crick DC (2005) N Glycolylation of the nucleotide precursors of peptidoglycan biosynthesis of Mycobacterium spp. is altered by drug treatment. J Bacteriol 187:2341–2347. doi: 10.1128/JB.187.7.2341-2347.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Mahapatra S, Yagi T, Belisle JT et al (2005) Mycobacterial lipid II is composed of a complex mixture of modified muramyl and peptide moieties linked to decaprenyl phosphate. J Bacteriol 187:2747–2757. doi: 10.1128/JB.187.8.2747-2757.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Kumar V, Saravanan P, Arvind A, Mohan CG (2011) Identification of hotspot regions of MurB oxidoreductase enzyme using homology modeling, molecular dynamics and molecular docking techniques. J Mol Model 17:939–953. doi: 10.1007/s00894-010-0788-3 PubMedCrossRefGoogle Scholar
  121. 121.
    Tomasić T, Zidar N, Kovac A et al (2010) 5-Benzylidenethiazolidin-4-ones as multitarget inhibitors of bacterial Mur ligases. ChemMedChem 5:286–295. doi: 10.1002/cmdc.200900449 PubMedCrossRefGoogle Scholar
  122. 122.
    Morayya S, Awasthy D, Yadav R et al (2015) Revisiting the essentiality of glutamate racemase in Mycobacterium tuberculosis. Gene 555:269–276. doi: 10.1016/j.gene.2014.11.017 PubMedCrossRefGoogle Scholar
  123. 123.
    Johnson EE, Wessling-Resnick M (2012) Iron metabolism and the innate immune response to infection. Microbes Infect 14:207–216. doi: 10.1016/j.micinf.2011.10.001 PubMedCrossRefGoogle Scholar
  124. 124.
    Rodriguez GM (2006) Control of iron metabolism in Mycobacterium tuberculosis. Trends Microbiol 14:320–327. doi: 10.1016/j.tim.2006.05.006 PubMedCrossRefGoogle Scholar
  125. 125.
    Neres J, Labello NP, Somu RV et al (2008) Inhibition of siderophore biosynthesis in Mycobacterium tuberculosis with nucleoside bisubstrate analogues: structure-activity relationships of the nucleobase domain of 5′-O-[N-(salicyl)sulfamoyl]adenosine. J Med Chem 51:5349–5370. doi: 10.1021/jm800567v PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Domenech P, Reed MB, Barry CE (2005) Contribution of the Mycobacterium tuberculosis MmpL protein family to virulence and drug resistance. Infect Immun 73:3492–3501. doi: 10.1128/IAI.73.6.3492-3501.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Varela C, Rittmann D, Singh A et al (2012) MmpL genes are associated with mycolic acid metabolism in mycobacteria and corynebacteria. Chem Biol 19:498–506. doi: 10.1016/j.chembiol.2012.03.006 PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Khare G, Nangpal P, Tyagi AK (2017) Differential roles of iron storage proteins in maintaining the iron homeostasis in Mycobacterium tuberculosis. PLoS One 12:e0169545. doi: 10.1371/journal.pone.0169545 PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Reddy PV, Puri RV, Khera A, Tyagi AK (2012) Iron storage proteins are essential for the survival and pathogenesis of Mycobacterium tuberculosis in THP-1 macrophages and the guinea pig model of infection. J Bacteriol 194:567–575. doi: 10.1128/JB.05553-11 PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Pandey R, Rodriguez GM (2014) IdeR is required for iron homeostasis and virulence in Mycobacterium tuberculosis. Mol Microbiol 91:98–109. doi: 10.1111/mmi.12441 PubMedCrossRefGoogle Scholar
  131. 131.
    Marrero J, Rhee KY, Schnappinger D et al (2010) Gluconeogenic carbon flow of tricarboxylic acid cycle intermediates is critical for Mycobacterium tuberculosis to establish and maintain infection. Proc Natl Acad Sci U S A 107:9819–9824. doi: 10.1073/pnas.1000715107 PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Haagsma AC, Abdillahi-Ibrahim R, Wagner MJ et al (2009) Selectivity of TMC207 towards mycobacterial ATP synthase compared with that towards the eukaryotic homologue. Antimicrob Agents Chemother 53:1290–1292. doi: 10.1128/AAC.01393-08 PubMedCrossRefGoogle Scholar
  133. 133.
    Abuhammad A (2017) Cholesterol metabolism: a potential therapeutic target in mycobacteria. Br J Pharmacol. doi: 10.1111/bph.13694
  134. 134.
    Brötz-Oesterhelt H, Beyer D, Kroll H-PP et al (2005) Dysregulation of bacterial proteolytic machinery by a new class of antibiotics. Nat Med 11:1082–1087. doi: 10.1038/nm1306 PubMedCrossRefGoogle Scholar
  135. 135.
    Ollinger J, O’Malley T, Kesicki EA et al (2012) Validation of the essential ClpP protease in Mycobacterium tuberculosis as a novel drug target. J Bacteriol 194:663–668. doi: 10.1128/JB.06142-11 PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Conlon BP, Nakayasu ES, Fleck LE et al (2013) Activated ClpP kills persisters and eradicates a chronic biofilm infection. Nature 503:365–370. doi: 10.1038/nature12790 PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Cheng L, Naumann TA, Horswill AR et al (2007) Discovery of antibacterial cyclic peptides that inhibit the ClpXP protease. Protein Sci 16:1535–1542. doi: 10.1110/ps.072933007 PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    World Health Organization (2016) Pipeline Report—HIV &TB, 2016. WHO LibraryGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Institut de Pharmacologie et Biologie Structurale, IPBS, Université de ToulouseCNRS - Centre National de la Recherche Scientifique, UPS - Université Paul SabatierToulouseFrance

Personalised recommendations