Advertisement

The Story of Kinase Inhibitors Development with Special Reference to Allosteric Site

  • Pabitra Mohan Behera
  • Anshuman DixitEmail author
Chapter

Abstract

Protein kinases are a group of enzymes which play a significant role in every aspect of cellular metabolism. The kinases as mediators of protein phosphorylation are very important in disease pathophysiology (e.g. cancer) by means of mutational activation or by helping the neoplastic growth. They are considered one of the most important classes of drug targets and design and development of specific kinase inhibitors has therefore, became a major strategy in drug discovery programs. The ATP binding site has been the established target for kinase inhibitor design. However, the problem of inhibitor selectivity at the highly conserved ATP site has led the kinase inhibitor research towards identification of allosteric inhibitors. In the current chapter we will discuss the structure of kinase domain and the types of inhibitors focusing on allosteric inhibitors.

References

  1. 1.
    Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298:1912–1934CrossRefPubMedGoogle Scholar
  2. 2.
    Adams JA (2001) Kinetic and catalytic mechanisms of protein kinases. Chem Rev 101:2271–2290CrossRefPubMedGoogle Scholar
  3. 3.
    Huang M, Shen A, Ding J, Geng M (2014) Molecularly targeted cancer therapy: some lessons from the past decade. Trends Pharmacol Sci 35:41–50CrossRefPubMedGoogle Scholar
  4. 4.
    Ma WW, Adjei AA (2009) Novel agents on the horizon for cancer therapy. CA Cancer J Clin 59:111–137CrossRefPubMedGoogle Scholar
  5. 5.
    Sun C, Bernards R (2014) Feedback and redundancy in receptor tyrosine kinase signaling: relevance to cancer therapies. Trends Biochem Sci 39:465–474CrossRefPubMedGoogle Scholar
  6. 6.
    Banks AS, McAllister FE, Camporez JP, Zushin PJ, Jurczak MJ, Laznik-Bogoslavski D, Shulman GI, Gygi SP, Spiegelman BM, An ERK (2015) Cdk5 axis controls the diabetogenic actions of PPARg. Nature 517:391–395CrossRefPubMedGoogle Scholar
  7. 7.
    Kikuchi R, Nakamura K, MacLauchlan S, Ngo DT, Shimizu I, Fuster JJ, Katanasaka Y, Yoshida S, Qiu Y, Yamaguchi TP, Matsushita T, Murohara T, Gokce N, Bates DO, Hamburg NM, Walsh K (2014) An antiangiogenic isoform of VEGF-A contributes to impaired vascularization in peripheral artery disease. Nat Med 20:1464–1471CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Clark JD, Flanagan ME, Telliez JB (2014) Discovery and development of Janus kinase (JAK) inhibitors for inflammatory diseases. J Med Chem 57:5023–5038CrossRefPubMedGoogle Scholar
  9. 9.
    Barnes PJ (2013) New anti-inflammatory targets for chronic obstructive pulmonary disease. Nat Rev Drug Discov 12:543–559CrossRefPubMedGoogle Scholar
  10. 10.
    Muth F, Günther M, Bauer SM, Döring E, Fischer S, Maier J, Drückes P, Köppler J, Trappe J, Rothbauer U, Koch P, Laufer SA (2015) Tetra-substituted pyridinylimidazoles as dual inhibitors of p38a mitogen-activated protein kinase and c-Jun N-terminal kinase 3 for potential treatment of neurodegenerative diseases. J Med Chem 58:443–456CrossRefPubMedGoogle Scholar
  11. 11.
    Paul MK, Mukhopadhyay AK (2004) Tyrosine kinase – role and significance in Cancer. Int J Med Sci 1(2):101–115CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Zhang J, Yang PL, Gray NS (2009) Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer 9:28–39CrossRefPubMedGoogle Scholar
  13. 13.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Knighton D, Zheng JH, Ten Eyck LF, Ashford VA, Xuong NH, Taylor SS, Sowadski JM (1991) Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science 253(5018):407–414CrossRefPubMedGoogle Scholar
  15. 15.
    Taylor SS, Keshwani MM, Steichen JM, Kornev AP (2012) Evolution of the eukaryotic protein kinases as dynamic molecular switches. Philos Trans R Soc Lond Ser B Biol Sci 367:2517–2528CrossRefGoogle Scholar
  16. 16.
    Hanks SK, Quinn AM, Hunter T (1988) The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241:42–52CrossRefPubMedGoogle Scholar
  17. 17.
    Tong M, Seeliger MA (2015) Targeting conformational plasticity of protein kinases. ACS Chem Biol 10:190–200CrossRefPubMedGoogle Scholar
  18. 18.
    Dar AC, Shokat KM (2011) The evolution of protein kinase inhibitors from antagonists to agonists of cellular signaling. Annu Rev Biochem 80:769–795CrossRefPubMedGoogle Scholar
  19. 19.
    Zuccotto F, Ardini E, Casale E, Angiolini M (2010) Through the gatekeeper door: exploiting the active kinase conformation. J Med Chem 53:2681–2694CrossRefPubMedGoogle Scholar
  20. 20.
    Dixit A, Verkhivker GM (2009) Hierarchical modeling of activation mechanisms in the ABL and EGFR kinase domains: thermodynamic and mechanistic catalysts of kinase activation by cancer mutations. PLoS Comput Biol 5(8):e1000487CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Liu Y, Gray NS (2006) Rational design of inhibitors that bind to inactive kinase conformations. Nat Chem Biol 2:358–364CrossRefPubMedGoogle Scholar
  22. 22.
    Mol CD, Fabbro D, Hosfield DJ (2004) Structural insights into the conformational selectivity of STI-571 and related kinase inhibitors. Curr Opin Drug Discov Dev 7:639–648Google Scholar
  23. 23.
    Gavrin LK, Saiah E (2013) Approaches to discover non-ATP site inhibitors. Med Chem Commun 4:41CrossRefGoogle Scholar
  24. 24.
    Alessi DR, Cuenda A, Cohen P, Dudley DT, Saltiel AR (1995) PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J Biol Chem 270:27489–27494CrossRefPubMedGoogle Scholar
  25. 25.
    Ohren JF, Chen H, Pavlovsky A, Whitehead C, Zhang E (2004) Structures of human MAP kinase kinase 1 (MEK1) and MEK2 describe novel noncompetitive kinase inhibition. Nat Struct Mol Biol 11(12):1192–1197CrossRefPubMedGoogle Scholar
  26. 26.
    Peng Wu, Mads H. Clausen, Thomas E. Nielsen, (2015) Allosteric small-molecule kinase inhibitors. Pharmacology & Therapeutics 156:59–68Google Scholar
  27. 27.
    Salama AK, Kim KB (2013) Trametinib (GSK1120212) in the treatment of melanoma. Expert Opin Pharmacother 14:619–627CrossRefPubMedGoogle Scholar
  28. 28.
    Wright CJ, McCormack PL (2013) Trametinib: first global approval. Drugs 73:1245–1254CrossRefPubMedGoogle Scholar
  29. 29.
    Iwatani M, Iwata H, Okabe A, Skene RJ, Tomita N, Hayashi Y, Aramaki Y, Hosfield DJ, Hori A, Baba A, Miki H (2013) Discovery and characterization of novel allosteric FAK inhibitors. Eur J Med Chem 61:49–60CrossRefPubMedGoogle Scholar
  30. 30.
    Tomita N, Hayashi Y, Suzuki S, Oomori Y, Aramaki Y, Matsushita Y, Iwatani M, Iwata H, Okabe A, Awazu Y, Isono O, Skene RJ, Hosfield DJ, Miki H, Kawamoto T, Hori A, Baba A (2013) Structure-based discovery of cellular-active allosteric inhibitors of FAK. Bioorg Med Chem Lett 23:1779–1785CrossRefPubMedGoogle Scholar
  31. 31.
    Rice KD, Aay N, Anand NK, Blazey CM, Bowles OJ, Bussenius J et al (2012) Novel carboxamide-based allosteric MEK inhibitors: discovery and optimization efforts toward XL518 (GDC-0973). ACS Med Chem Lett 3:416–421CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Ascierto PA, McArthur GA, Dréno B, Atkinson V, Liszkay G, Di Giacomo AM, Mandalà M, Demidov L, Stroyakovskiy D, Thomas L, de la Cruz-Merino L, Dutriaux C, Garbe C, Yan Y, Wongchenko M, Chang I, Hsu JJ, Koralek DO, Rooney I, Ribas A, Larkin J (2016) Cobimetinib combined with vemurafenib in advanced BRAF(V600)-mutant melanoma (coBRIM): updated efficacy results from a randomised, double-blind, phase 3 trial. Lancet Oncol 17(9):1248–1260CrossRefPubMedGoogle Scholar
  33. 33.
    Hirai H, Sootome H, Nakatsuru Y, Miyama K, Taguchi S, Tsujioka K et al (2010) MK-2206, an allosteric Akt inhibitor, enhances antitumor efficacy by standard chemotherapeutic agents or molecular targeted drugs in vitro and in vivo. Mol Cancer Ther 9:1956–1967CrossRefPubMedGoogle Scholar
  34. 34.
    Rastelli G, Anighoro A, Chripkova M, Carrassa L, Broggini M (2014) Structure based discovery of the first allosteric inhibitors of cyclin-dependent kinase 2. Cell Cycle 13:2296–2305CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Goodwin NC, Cianchetta G, Burgoon HA, Healy J, Mabon R, Strobel ED, Allen J, Wang S, Hamman BD, Rawlins DB (2015) Discovery of a type III inhibitor of LIM kinase 2 that binds in a DFG-out conformation. ACS Med Chem Lett 6:53−57CrossRefGoogle Scholar
  36. 36.
    Cox KJ (2010) Tinkering outside the kinase ATP box: allosteric (type IV) and bivalent (type V) inhibitors of protein kinases. Future Med Chem 3:29–43CrossRefGoogle Scholar
  37. 37.
    Monod J, Changeux JP, Jacob F (1963) Allosteric proteins and cellular control systems. J Mol Biol 6:306–329Google Scholar
  38. 38.
    Simard JR, Kluter S, Grutter C, Getlik M, Rabiller M, Rode HB, Rauh D (2009) A new screening assay for allosteric inhibitors of cSrc Nat Chem Biol 5:394–396Google Scholar
  39. 39.
    Vignaroli G, Mencarelli M, Sementa D, Crespan E, Kissova M, Maga G et al (2014) Exploring the chemical space around the privileged pyrazolo[3,4-d]pyrimidine scaffold: Toward novel allosteric inhibitors of T315I-mutated Abl. ACS Comb Sci 16:168–175CrossRefPubMedGoogle Scholar
  40. 40.
    Adrian FJ, Ding Q, Sim T, Velentza A, Sloan C, Liu Y (2006) Allosteric inhibitors of Bcr-abl-dependent cell proliferation. Nat Chem Biol 2:95–102CrossRefPubMedGoogle Scholar
  41. 41.
    Fallacara AL, Tintori C, Radi M, Schenone S, Botta M (2014) Insight into the allosteric inhibition of Abl kinase. J Chem Inf Model 54:1325–1338CrossRefPubMedGoogle Scholar
  42. 42.
    Yamada K, Zhang J, Xie X, Reinhardt J, Qiongshu Xie A, LaSala D et al (2016) Discovery and characterization of allosteric WNK kinase inhibitors. ACS Chem Biol 11(12):3338–3346CrossRefPubMedGoogle Scholar
  43. 43.
    Lamba V, Ghosh I (2012) New directions in targeting protein kinases: focusing upon true allosteric and bivalent inhibitors. Curr Pharm Des 18:2936–2945CrossRefPubMedGoogle Scholar
  44. 44.
    Parang K, Till JH, Ablooglu AJ, Kohanski RA, Hubbard SR, Cole PA (2001) Mechanism-based design of a protein kinase inhibitor. Nat Struct Biol 8:37–41CrossRefPubMedGoogle Scholar
  45. 45.
    Profit AA, Lee TR, Lawrence DS (1999) Bivalent inhibitors of protein tyrosine kinases. J Am Chem Soc 121:280–283CrossRefGoogle Scholar
  46. 46.
    Cohen MS, Zhang C, Shokat KM, Taunton J (2005) Structural bioinformatics-based design of selective, irreversible kinase inhibitors. Science 308:1318–1321CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Solca F, Dahl G, Zoephel A, Bader G, Sanderson M, Klein C, Kraemer O, Himmelsbach F, Haaksma E, Adolf GR (2012) Target binding properties and cellular activity of afatinib (BIBW 2992), an irreversible ErbB family blocker. J Pharmacol Exp Ther. 343:342–350.Google Scholar
  48. 48.
    Roskoski Jr. R(2016) Classification of small molecule protein kinase inhibitors based upon the structures of their drug-enzyme complexes, Pharmacological Research 103:26–48.Google Scholar
  49. 49.
    Kinch MS, Patridge E, Plummer M, Hoyer D (2014) An analysis of FDA-approved drugs for oncology. Drug Discov Today 19:1831–1835Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Computational Biology and Bioinformatics Laboratory, Institute of Life SciencesBhubaneswarIndia

Personalised recommendations