Pharmacogenetics and Personalized Medicine

  • Antonello Di PaoloEmail author
  • Elena Arrigoni
  • Sara Galimberti
  • Romano Danesi


Recent advances in the comprehension of pathogenic mechanisms of human diseases have brought the researchers to the discovery of putative pharmacological targets and the subsequent development of the so-called targeted drugs. In order to maximize their efficacy, as well as that of the other drugs, it is imperative to identify those patients that are more prone to experience a therapeutic benefit. In the pharmacogenetic area, several strategies may be pursued to assay biomarkers. The quantitation of gene expression, the identification of changes in gene and chromosomal sequences, and the evaluation of epigenetic factors may contribute to anticipate drug efficacy and tolerability. At those levels, the number of candidate genes that may be investigated is highly variable, up to the evaluation of the whole human genome. Despite the increasing complexity of pharmacogenetic analyses and their interpretation, some relationships between genetic biomarkers and treatment outcomes may be characterized by suboptimal values of sensitivity and specificity. For that reason, the validation of the biomarkers and their transfer into the clinics are the major challenges.


Pharmacogenetics Gene expression Polymorphisms Mutations Gene amplification Deletion Biomarkers Next-generation sequencing Genome-wide association studies Microarray Study design 



3′-Untranslated region




ATP-binding cassette transporter family member B1


Italian Medicine Agency


Acute myeloid leukemia


Breakpoint cluster region-Abelson


Chronic myeloid leukemia


Colorectal cancer


Cytochrome P450 isoform 2D6


Cytochrome P450 isoform 3A4


Cytochrome P450


Digital droplet PCR


DNA methyl transferase


Dihydropyrimidine dehydrogenase


Epithelial growth factor receptor


European Leukemia Network


Food and Drug Administration


Histone acetyltransferase


Histone deacetyltransferase


Hydroxymethyl-glutaryl coenzyme A


Human organic cation transporter family member 1


Long-noncoding RNA




N-acetyl transferase


Noncoding RNA


Next-generation sequencing


Nonsteroidal anti-inflammatory drug


Non-small-cell lung cancer


Overall survival


Polymerase chain reaction


Progression-free survival


Response rate


Solute carrier organic anion transporter family member 1B1


Solute carrier organic anion transporter family member 1B3


Single-nucleotide polymorphism


Thymidylate synthase


Genome-wide association study


  1. 1.
    Modell SM, Lehmann MH (2006) The long QT syndrome family of cardiac ion channelopathies: a HuGE review. Genet Med 8(3):143–155CrossRefPubMedGoogle Scholar
  2. 2.
    Koussounadis A, Langdon SP, Um IH, Harrison DJ, Smith VA (2015) Relationship between differentially expressed mRNA and mRNA-protein correlations in a xenograft model system. Sci Rep 5:10775CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Maier T, Güell M, Serrano L (2009) Correlation of mRNA and protein in complex biological samples. FEBS Lett 583(24):3966–3973CrossRefPubMedGoogle Scholar
  4. 4.
    Crea F, Di Paolo A, Liu HH, Polillo M, Clermont P-L, Guerrini F, Ciabatti E, Ricci F, Baratè C, Fontanelli G, Barsotti S, Morganti R, Danesi R, Wang Y, Petrini M, Galimberti S, Helgason CD (2015) Polycomb genes are associated with response to imatinib in chronic myeloid leukemia. Epigenomics 7(5):757–765CrossRefPubMedGoogle Scholar
  5. 5.
    Lu W, Li X, Uetrecht JP (2008) Changes in gene expression induced by carbamazepine and phenytoin: testing the danger hypothesis. J Immunotoxicol 5(2):107–113CrossRefPubMedGoogle Scholar
  6. 6.
    Sankpal UT, Goodison S, Jones-Pauley M, Hurtado M, Zhang F, Basha R Tolfenamic acid-induced alterations in genes and pathways in pancreatic cancer cells. Oncotarget. 2017 Jan 14; doi 10.18632/oncotarget.14651Google Scholar
  7. 7.
    Wang ZC, Lin M, Wei L-J, Li C, Miron A, Lodeiro G, Harris L, Ramaswamy S, Tanenbaum DM, Meyerson M, Iglehart JD, Richardson A (2004) Loss of heterozygosity and its correlation with expression profiles in subclasses of invasive breast cancers. Cancer Res 64(1):64–71CrossRefPubMedGoogle Scholar
  8. 8.
    Li L, Fridley BL, Kalari K, Jenkins G, Batzler A, Weinshilboum RM, Wang L (2009) Gemcitabine and arabinosylcytosin pharmacogenomics: genome-wide association and drug response biomarkers. PLoS One 4(11):e7765CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Li L, Zhang J-W, Jenkins G, Xie F, Carlson EE, Fridley BL, Bamlet WR, Petersen GM, McWilliams RR, Wang L (2016) Genetic variations associated with gemcitabine treatment outcome in pancreatic cancer. Pharmacogenet Genomics 26(12):527–537CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Moore JH, Asselbergs FW, Williams SM (2010) Bioinformatics challenges for genome-wide association studies. Bioinformatics 26(4):445–455CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Liu Y, Maxwell S, Feng T, Zhu X, Elston RC, Koyutürk M, Chance MR (2012) Gene, pathway and network frameworks to identify epistatic interactions of single nucleotide polymorphisms derived from GWAS data. BMC Syst Biol 6(Suppl 3):S15CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Weigelt B, Reis-Filho JS (2014) Epistatic interactions and drug response. J Pathol 232(2):255–263CrossRefPubMedGoogle Scholar
  13. 13.
    Huang J, Qi R, Quackenbush J, Dauway E, Lazaridis E, Yeatman T (2001) Effects of ischemia on gene expression. J Surg Res 99(2):222–227CrossRefPubMedGoogle Scholar
  14. 14.
    Musella V, Verderio P, Reid JF, Pizzamiglio S, Gariboldi M, Callari M, Milione M, De Cecco L, Veneroni S, Pierotti MA, Daidone MG (2013) Effects of warm ischemic time on gene expression profiling in colorectal cancer tissues and normal mucosa. PLoS One 8(1):e53406CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Mroz EA, Rocco JW (2017) The challenges of tumor genetic diversity. Cancer 123(6):917–927CrossRefPubMedGoogle Scholar
  16. 16.
    Di Paolo A, Polillo M, Lastella M, Bocci G, Del Re M, Danesi R (2015) Methods: for studying pharmacogenetic profiles of combination chemotherapeutic drugs. Expert Opin Drug Metab Toxicol 11(8):1253–1267CrossRefPubMedGoogle Scholar
  17. 17.
    Hothem Z, Bayci A, Thibodeau BJ, Ketelsen BE, Fortier LE, Uzieblo AF, Cosner D, Totoraitis K, Keidan RD, Wilson GD (2017) Using global gene expression to discriminate thin melanomas with poor outcomes. Mol Cell Oncol 4(1):e1253527CrossRefPubMedGoogle Scholar
  18. 18.
    Lv W-P, Han R-F, Shu Z-R (2014) Associations between the C3435T polymorphism of the ABCB1 gene and drug resistance in epilepsy: a meta-analysis. Int J Clin Exp Med 7(11):3924–3932PubMedPubMedCentralGoogle Scholar
  19. 19.
    Di Paolo A, Polillo M, Capecchi M, Cervetti G, Baratè C, Angelini S, Guerrini F, Fontanelli G, Arici R, Ciabatti E, Grassi S, Bocci G, Hrelia P, Danesi R, Petrini M, Galimberti S. The c.480C>G polymorphism of hOCT1 influences imatinib clearance in patients affected by chronic myeloid leukemia. Pharmacogenomics J 2014;14(4):328–335.Google Scholar
  20. 20.
    Gay C, Toulet D, Le Corre P (2016) Pharmacokinetic drug-drug interactions of tyrosine kinase inhibitors: a focus on cytochrome P450, transporters, and acid suppression therapy. Hematol Oncol. doi: 10.1002/hon.2335
  21. 21.
    Galeotti L, Ceccherini F, Domingo D, Laurino M, Polillo M, Di Paolo A, Baratè C, Fava C, D'Avolio A, Cervetti G, Guerrini F, Fontanelli G, Ciabatti E, Grassi S, Arrigoni E, Danesi R, Petrini M, Cornolti F, Saglio G, Galimberti S (2017) Association of the hOCT1/ABCB1 genotype with efficacy and tolerability of imatinib in patients affected by chronic myeloid leukemia. Cancer Chemother Pharmacol 13Google Scholar
  22. 22.
    Webster LR, Belfer I (2016) Pharmacogenetics and personalized medicine in pain management. Clin Lab Med 36(3):493–506CrossRefPubMedGoogle Scholar
  23. 23.
    Miyata Y, Akamatsu N, Sugawara Y, Kaneko J, Yamamoto T, Suzuki H, Arita J, Sakamoto Y, Hasegawa K, Tamura S, Kokudo N (2016) Pharmacokinetics of a once-daily dose of Tacrolimus early after liver transplantation: with special reference to CYP3A5 and ABCB1 single nucleotide polymorphisms. Ann Transplant 21:491–499CrossRefPubMedGoogle Scholar
  24. 24.
    Arrigoni E, Del Re M, Fidilio L, Fogli S, Danesi R, Di Paolo A (2017) Pharmacogenetic foundations of therapeutic efficacy and adverse events of statins. Int J Mol Sci 18(1)Google Scholar
  25. 25.
    Olivier M, Hollstein M, Hainaut P (2010) TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol 2(1):a001008CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Arrington AK, Heinrich EL, Lee W, Duldulao M, Patel S, Sanchez J, Garcia-Aguilar J, Kim J (2012) Prognostic and predictive roles of KRAS mutation in colorectal cancer. Int J Mol Sci 13(10):12153–12168CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Yang J, Li S, Wang B, Wu Y, Chen Z, Lv M, Lin Y, Yanh J (2016) Potential biomarkers for anti-EGFR therapy in metastatic colorectal cancer. Tumour Biol 37(9):11645–11655CrossRefPubMedGoogle Scholar
  28. 28.
    Hientz K, Mohr A, Bhakta-Guha D, Efferth T (2017) The role of p53 in cancer drug resistance and targeted chemotherapy. Oncotarget 8(5):8921–8946PubMedGoogle Scholar
  29. 29.
    Bahrami A, Hassanian SM, ShahidSales S, Farjami Z, Hasanzadeh M, Anvari K, Aledavood A, Maftouh M, Ferns GA, Khazaei M, Avan A (2017) Targeting the RAS signaling pathway as a potential therapeutic target in the treatment of colorectal cancer. J Cell Physiol. doi: 10.1002/jcp.25890
  30. 30.
    Kassouf E, Tabchi S, Tehfe M (2016) Anti-EGFR therapy for metastatic colorectal cancer in the era of extended RAS Gene mutational analysis. BioDrugs 30(2):95–104CrossRefPubMedGoogle Scholar
  31. 31.
    Lee DH. Treatments for EGFR-mutant non-small cell lung cancer (NSCLC): the road to a success, paved with failures. Pharmacol Ther2017.02.0012017; Doi 01016/JpharmtheraGoogle Scholar
  32. 32.
    Baccarani M, Castagnetti F, Gugliotta G, Rosti GA (2015) Review of the European LeukemiaNet recommendations for the management of CML. Ann Hematol 94(Suppl 2):S141–S147CrossRefPubMedGoogle Scholar
  33. 33.
    Molica M, Massaro F, Breccia M (2017) Second line small molecule therapy options for treating chronic myeloid leukemia. Expert Opin Pharmacother 18(1):57–65CrossRefPubMedGoogle Scholar
  34. 34.
    Deeley K, Noel J, Vieira AR (2016) Comparative study of five commercially available saliva collection kits for DNA extraction. Clin Lab 62(9):1809–1813PubMedGoogle Scholar
  35. 35.
    Sauna ZE, Kimchi-Sarfaty C (2011) Understanding the contribution of synonymous mutations to human disease. Nat Rev Genet 12(10):683–691CrossRefPubMedGoogle Scholar
  36. 36.
    Kimchi-Sarfaty C, JM O, Kim I-W, Sauna ZE, Calcagno AM, Ambudkar SV, Gottesman MMA (2007) “Silent” polymorphism in the MDR1 gene changes substrate specificity. Science 315(5811):525–528CrossRefPubMedGoogle Scholar
  37. 37.
    Megías-Vericat JE, Montesinos P, Herrero MJ, Moscardó F, Bosó V, Rojas L, Martínez-Cuadrón D, Hervás D, Boluda B, García-Robles A, Rodríguez-Veiga R, Martín-Cerezuela M, Cervera J, Sendra L, Sanz J, Miguel A, Lorenzo I, Poveda JL, Sanz MÁ, Aliño SF (2017) Impact of ABC single nucleotide polymorphisms upon the efficacy and toxicity of induction chemotherapy in acute myeloid leukemia. Leuk Lymphoma 58(5):1197–1206CrossRefPubMedGoogle Scholar
  38. 38.
    Soranzo N, Cavalleri GL, Weale ME, Wood NW, Depondt C, Marguerie R, Sisodiya SM, Goldstein DB (2004) Identifying candidate causal variants responsible for altered activity of the ABCB1 multidrug resistance gene. Genome Res 14(7):1333–1344CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Syn NL-X, Yong W-P, Goh B-C, Lee S-C (2016) Evolving landscape of tumor molecular profiling for personalized cancer therapy: a comprehensive review. Expert Opin Drug Metab Toxicol 12(8):911–922CrossRefPubMedGoogle Scholar
  40. 40.
    Wang Z, Zang C, Cui K, Schones DE, Barski A, Peng W, Zhao K (2009) Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 138(5):1019–1031CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Ambrosi C, Manzo M, Baubec T. Dynamics and context-dependent roles of DNA methylation. J Mol Biol2017.02.0082017; doi 01016/Jjmb.Google Scholar
  42. 42.
    Haery L, Thompson RC, Gilmore TD (2015) Histone acetyltransferases and histone deacetylases in B- and T-cell development, physiology and malignancy. Genes Cancer 6(5–6):184–213PubMedPubMedCentralGoogle Scholar
  43. 43.
    Cohen I, Poręba E, Kamieniarz K, Schneider R (2011) Histone modifiers in cancer: friends or foes? Genes Cancer 2(6):631–647CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Tan M, Luo H, Lee S, Jin F, Yang JS, Montellier E, Buchou T, Cheng Z, Rousseaux S, Rajagopal N, Lu Z, Ye Z, Zhu Q, Wysocka J, Ye Y, Khochbin S, Ren B, Zhao Y (2011) Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146(6):1016–1028CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Lee BM, Mahadevan LC (2009) Stability of histone modifications across mammalian genomes: implications for “epigenetic” marking. J Cell Biochem 108(1):22–34CrossRefPubMedGoogle Scholar
  46. 46.
    Olzscha H, Sheikh S, La Thangue NB (2015) Deacetylation of chromatin and gene expression regulation: a new target for epigenetic therapy. Crit Rev Oncog 20:1–2):1–17CrossRefPubMedGoogle Scholar
  47. 47.
    Kim H-J, Bae S-C (2011) Histone deacetylase inhibitors: molecular mechanisms of action and clinical trials as anti-cancer drugs. Am J Transl Res 3(2):166–179PubMedGoogle Scholar
  48. 48.
    Subramaniam D, Thombre R, Dhar A, Anant S (2014) DNA methyltransferases: a novel target for prevention and therapy. Front Oncol 4:80CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Castillo-Aguilera O, Depreux P, Halby L, Arimondo PB, Goossens L (2017) DNA methylation targeting: the DNMT/HMT crosstalk challenge. Biomol Ther 7(1). doi: 10.3390/biom7010003
  50. 50.
    Kurdyukov S, Bullock M (2016) DNA methylation analysis: choosing the right method. Biology (Basel) 5(1)Google Scholar
  51. 51.
    Baharudin R, Ab Mutalib N-S, Othman SN, Sagap I, Rose IM, Mohd Mokhtar N, Jamal R (2017) Identification of predictive DNA methylation biomarkers for chemotherapy response in colorectal cancer. Front Pharmacol 8:47CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Rose NR, Klose RJ (2014) Understanding the relationship between DNA methylation and histone lysine methylation. Biochim Biophys Acta 1839(12):1362–1372CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Ayers D, Vandesompele J (2017) Influence of microRNAs and long non-coding RNAs in cancer chemoresistance. Genes (Basel) 8(3):3CrossRefGoogle Scholar
  54. 54.
    Deng H, Zhang J, Shi J, Guo Z, He C, Ding L, Tang JH, Hou Y (2016) Role of long non-coding RNA in tumor drug resistance. Tumour Biol 37(9):11623–11631CrossRefPubMedGoogle Scholar
  55. 55.
    Guo H, Ingolia NT, Weissman JS, Bartel DP (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466(7308):835–840CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, Huarte M, Zuk O, Carey BW, Cassady JP, Cabili MN, Jaenisch R, Mikkelsen TS, Jacks T, Hacohen N, Bernstein BE, Kellis M, Regev A, Rinn JL, Lander ES (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458(7235):223–227CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Hu W, Yuan B, Flygare J, Lodish HF (2011) Long noncoding RNA-mediated anti-apoptotic activity in murine erythroid terminal differentiation. Genes Dev 25(24):2573–2578CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Li J, Tian H, Yang J, Gong Z (2016) Long noncoding RNAs regulate cell growth, proliferation, and apoptosis. DNA Cell Biol 35(9):459–470CrossRefPubMedGoogle Scholar
  59. 59.
    Askarian-Amiri ME, Leung E, Finlay G, Baguley BC (2016) The regulatory role of long noncoding RNAs in cancer drug resistance. Methods Mol Biol 1395:207–227CrossRefPubMedGoogle Scholar
  60. 60.
    Arnes L, Sussel L (2015) Epigenetic modifications and long noncoding RNAs influence pancreas development and function. Trends Genet 31(6):290–299CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Viereck J, Thum T (2017) Circulating noncoding RNAs as biomarkers of cardiovascular disease and injury. Circ Res 120(2):381–399CrossRefPubMedGoogle Scholar
  62. 62.
    Duong Van Huyen J-P, Tible M, Gay A, Guillemain R, Aubert O, Varnous S, Iserin F, Rouvier P, François A, Vernerey D, Loyer X, Leprince P, Empana JP, Bruneval P, Loupy A, Jouven X (2014) MicroRNAs as non-invasive biomarkers of heart transplant rejection. Eur Heart J 35(45):3194–3202CrossRefPubMedGoogle Scholar
  63. 63.
    Busch A, Eken SM, Maegdefessel L (2016) Prospective and therapeutic screening value of non-coding RNA as biomarkers in cardiovascular disease. Ann Transl Med 4(12):236CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Kim KM, Abdelmohsen K, Mustapic M, Kapogiannis D, Gorospe MRNA (1413) In extracellular vesicles. Wiley Interdiscip rev RNA. In: 2017; doi 0.1002/wrnaGoogle Scholar
  65. 65.
    Boyiadzis M, Whiteside TL (2015) Information transfer by exosomes: a new frontier in hematologic malignancies. Blood Rev 29(5):281–290CrossRefPubMedGoogle Scholar
  66. 66.
    Weidle UH, Birzele F, Kollmorgen G, Rüger R (2017) The multiple roles of exosomes in metastasis. Cancer Genomics Proteomics 14(1):1–15CrossRefPubMedGoogle Scholar
  67. 67.
    Gooding S, Edwards CM (2016) New approaches to targeting the bone marrow microenvironment in multiple myeloma. Curr Opin Pharmacol 28:43–49CrossRefPubMedGoogle Scholar
  68. 68.
    Drayer DE, Reidenberg MM (1977) Clinical consequences of polymorphic acetylation of basic drugs. Clin Pharmacol Ther 22(3):251–258CrossRefPubMedGoogle Scholar
  69. 69.
    Ingelman-Sundberg M (2004) Pharmacogenetics of cytochrome P450 and its applications in drug therapy: the past, present and future. Trends Pharmacol Sci 25(4):193–200CrossRefPubMedGoogle Scholar
  70. 70.
    Rodriguez-Antona C, Ingelman-Sundberg M (2006) Cytochrome P450 pharmacogenetics and cancer. Oncogene 25(11):1679–1691CrossRefPubMedGoogle Scholar
  71. 71.
    Ingelman-Sundberg M, Daly A, Nebert D. The Human Cytochrome P450 (CYP) Allele Nomenclature Database. [cited 2017 Mar 10]. Available from.:
  72. 72.
    Serpe L, Canaparo R, Scordo MG, Spina E (2015) Pharmacogenetics of drug-metabolizing enzymes in Italian populations. Drug Metab Pers Ther 30(2):107–120PubMedGoogle Scholar
  73. 73.
    Langaee T, Hamadeh I, Chapman AB, Gums JG, Johnson JA (2015) A novel simple method for determining CYP2D6 gene copy number and identifying allele(s) with duplication/multiplication. PLoS One 10(1):e0113808CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Kirchheiner J, Schmidt H, Tzvetkov M, Keulen J-THA, Lötsch J, Roots I, Brockmöller J (2007) Pharmacokinetics of codeine and its metabolite morphine in ultra-rapid metabolizers due to CYP2D6 duplication. Pharmacogenomics J 7(4):257–265CrossRefPubMedGoogle Scholar
  75. 75.
    Lötsch J, Rohrbacher M, Schmidt H, Doehring A, Brockmöller J, Geisslinger G (2009) Can extremely low or high morphine formation from codeine be predicted prior to therapy initiation? Pain 144(1–2):119–124CrossRefPubMedGoogle Scholar
  76. 76.
    Bertilsson L, Dahl M-L, Dalén P, Al-Shurbaji A (2002) Molecular genetics of CYP2D6: clinical relevance with focus on psychotropic drugs. Br J Clin Pharmacol 53(2):111–122CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Kawanishi C, Lundgren S, Agren H, Bertilsson L (2004) Increased incidence of CYP2D6 gene duplication in patients with persistent mood disorders: ultrarapid metabolism of antidepressants as a cause of nonresponse. A pilot study. Eur J Clin Pharmacol 59(11):803–807CrossRefPubMedGoogle Scholar
  78. 78.
    Schenk PW, van Fessem MAC, Verploegh-Van Rij S, Mathot RAA, van Gelder T, Vulto AG, van Vliet M, Lindemans J, Bruijn JA, van Schaik RH (2008) Association of graded allele-specific changes in CYP2D6 function with imipramine dose requirement in a large group of depressed patients. Mol Psychiatry 13(6):597–605CrossRefPubMedGoogle Scholar
  79. 79.
    Wang T-L, Diaz LA, Romans K, Bardelli A, Saha S, Galizia G, Choti M, Donehower R, Parmigiani G, Shih IM, Iacobuzio-Donahue C, Kinzler KW, Vogelstein B, Lengauer C, Velculescu VE (2004) Digital karyotyping identifies thymidylate synthase amplification as a mechanism of resistance to 5-fluorouracil in metastatic colorectal cancer patients. Proc Natl Acad Sci U S A 101(9):3089–3094CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN, Sawyers CL (2001) Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 293(5531):876–880CrossRefPubMedGoogle Scholar
  81. 81.
    Gmidène A, Saad A, Avet-Loiseau H (2013) 8p21.3 deletion suggesting a probable role of TRAIL-R1 and TRAIL-R2 as candidate tumor suppressor genes in the pathogenesis of multiple myeloma. Med Oncol 30(2):489CrossRefPubMedGoogle Scholar
  82. 82.
    Duru AD, Sutlu T, Wallblom A, Uttervall K, Lund J, Stellan B, Gahrton G, Nahi H, Alici E (2015) Deletion of chromosomal region 8p21 confers resistance to Bortezomib and is associated with upregulated decoy TRAIL receptor expression in patients with multiple myeloma. PLoS One 10(9):e0138248CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Kastner R, Zopf A, Preuner S, Pröll J, Niklas N, Foskett P, Valent P, Lion T, Gabriel C (2014) Rapid identification of compound mutations in patients with Philadelphia-positive leukaemias by long-range next generation sequencing. Eur J Cancer 50(4):793–800CrossRefPubMedGoogle Scholar
  84. 84.
    Szankasi P, Schumacher JA, Kelley TW (2016) Detection of BCR-ABL1 mutations that confer tyrosine kinase inhibitor resistance using massively parallel, next generation sequencing. Ann Hematol 95(2):201–210CrossRefPubMedGoogle Scholar
  85. 85.
    Baccarani M, Soverini S, De Benedittis C (2014) Molecular monitoring and mutations in chronic myeloid leukemia: how to get the most out of your tyrosine kinase inhibitor. Am Soc Clin Oncol Educ Book:167–175Google Scholar
  86. 86.
    Jabbour E, Kantarjian H (2016) Chronic myeloid leukemia: 2016 update on diagnosis, therapy, and monitoring. Am J Hematol 91(2):252–265CrossRefPubMedGoogle Scholar
  87. 87.
    Malapelle U, Pisapia P, Rocco D, Smeraglio R, di Spirito M, Bellevicine C, Troncone G (2016) Next generation sequencing techniques in liquid biopsy: focus on non-small cell lung cancer patients. Transl Lung Cancer Res 5(5):505–510CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Ulivi P (2016) Non-invasive methods to monitor mechanisms of resistance to tyrosine kinase inhibitors in non-small-cell lung cancer: where do we stand? Int J Mol Sci 17(7)Google Scholar
  89. 89.
    Lunenburg CATC, Henricks LM, Guchelaar H-J, Swen JJ, Deenen MJ, Schellens JHM, Gelderblom H (2016) Prospective DPYD genotyping to reduce the risk of fluoropyrimidine-induced severe toxicity: ready for prime time. Eur J Cancer 54:40–48CrossRefPubMedGoogle Scholar
  90. 90.
    Rosmarin D, Palles C, Church D, Domingo E, Jones A, Johnstone E, Wang H, Love S, Julier P, Scudder C, Nicholson G, Gonzalez-Neira A, Martin M, Sargent D, Green E, McLeod H, Zanger UM, Schwab M, Braun M, Seymour M, Thompson L, Lacas B, Boige V, Ribelles N, Afzal S, Enghusen H, Jensen SA, Etienne-Grimaldi MC, Milano G, Wadelius M, Glimelius B, Garmo H, Gusella M, Lecomte T, Laurent-Puig P, Martinez-Balibrea E, Sharma R, Garcia-Foncillas J, Kleibl Z, Morel A, Pignon JP, Midgley R, Kerr D, Tomlinson I (2014) Genetic markers of toxicity from capecitabine and other fluorouracil-based regimens: investigation in the QUASAR2 study, systematic review, and meta-analysis. J Clin Oncol 32(10):1031–1039CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Meulendijks D, Henricks LM, Sonke GS, Deenen MJ, Froehlich TK, Amstutz U, Largiadèr CR, Jennings BA, Marinaki AM, Sanderson JD, Kleibl Z, Kleiblova P, Schwab M, Zanger UM, Palles C, Tomlinson I, Gross E, van Kuilenburg AB, Punt CJ, Koopman M, Beijnen JH, Cats A, Schellens JH. Clinical relevance of DPYD variants c.1679T>G, c.1236G>A/HapB3, and c.1601G>A as predictors of severe fluoropyrimidine-associated toxicity: a systematic review and meta-analysis of individual patient data. Lancet Oncol 2015;16(16):1639–1650.Google Scholar
  92. 92.
    Schwab M, Zanger UM, Marx C, Schaeffeler E, Klein K, Dippon J, Kerb R, Blievernicht J, Fischer J, Hofmann U, Bokemeyer C (2008) Eichelbaum M; German 5-FU toxicity study group. Role of genetic and nongenetic factors for fluorouracil treatment-related severe toxicity: a prospective clinical trial by the German 5-FU toxicity study group. J Clin Oncol 26(13):2131–2138CrossRefPubMedGoogle Scholar
  93. 93.
    NCI NCI. NCI Dictionary of Cancer Terms. [cited 2017. Available from:
  94. 94.
    WHO. Priority MEdicines for Europe and the World Update Report 2013. Available from:
  95. 95.
    Henricks LM, Lunenburg CATC, Meulendijks D, Gelderblom H, Cats A, Swen JJ, Schellens JH, Guchelaar HJ, Translating DPYD (2015) Genotype into DPD phenotype: using the DPYD gene activity score. Pharmacogenomics 16(11):1277–1286CrossRefPubMedGoogle Scholar
  96. 96.
    Lee JJ, Beumer JH, Chu E (2016) Therapeutic drug monitoring of 5-fluorouracil. Cancer Chemother Pharmacol 78(3):447–464CrossRefPubMedGoogle Scholar
  97. 97.
    Milne C-P, Bryan C, Garafalo S, McKiernan M (2015) Complementary versus companion diagnostics: apples and oranges? Biomark Med 9(1):25–34CrossRefPubMedGoogle Scholar
  98. 98.
    Food and Drug Administration. Guidance for industry: In Vitro Companion Diagnostic Devices. 2014. Available from:
  99. 99.
    Food and Drug Administration. Principles for Codevelopment of an in Vitro Companion Diagnostic Device with a Therapeutic Product. 2016. Available from:
  100. 100.
    Perez-Gracia JL, Sanmamed MF, Bosch A, Patiño-Garcia A, Schalper KA, Segura V, Bellmunt J, Tabernero J, Sweeney CJ, Choueiri TK, Martín M, Fusco JP, Rodriguez-Ruiz ME, Calvo A, Prior C, Paz-Ares L, Pio R, Gonzalez-Billalabeitia E, Gonzalez Hernandez A, Páez D, Piulats JM, Gurpide A, Andueza M, de Velasco G, Pazo R, Grande E, Nicolas P, Abad-Santos F, Garcia-Donas J, Castellano D, Pajares MJ, Suarez C, Colomer R, Montuenga LM, Melero I (2017) Strategies to design clinical studies to identify predictive biomarkers in cancer research. Cancer Treat Rev 53:79–97CrossRefPubMedGoogle Scholar
  101. 101.
    Mandrekar SJ, Sargent DJ (2009) Clinical trial designs for predictive biomarker validation: one size does not fit all. J Biopharm Stat 19(3):530–542CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Mandrekar SJ, Sargent DJ (2009) Clinical trial designs for predictive biomarker validation: theoretical considerations and practical challenges. J Clin Oncol 27(24):4027–4034CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Agenzia Italiana del Farmaco (AIFA). Lista aggiornata dei Registri e dei Piani Terapeutici web based. [cited 2017 Mar 10] Available from

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Antonello Di Paolo
    • 1
    Email author
  • Elena Arrigoni
    • 1
  • Sara Galimberti
    • 1
  • Romano Danesi
    • 1
  1. 1.Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly

Personalised recommendations