Skip to main content

Calcium Signalling in Neurological Disorders

  • Chapter
  • First Online:
Calcium Signaling: From Physiology to Diseases

Abstract

Neurotransmitters are broadly classified as excitatory neurotransmitters and inhibitory neurotransmitters based on their function. Ca2+ has a fundamental role in the neuronal physiology and brain function by governing the synthesis and secretion of neurotransmitters. The intracellular Ca2+ concentration is not only important for the release of neurotransmitters but also essential for the regulation of their action potential in postsynaptic membranes. Ca2+ signalling has been implicated in almost all neural activities including neural cell membrane excitability, synaptic transmission, synaptogenesis and dendrite development and most importantly in learning, memory processing and storage. Molecular studies found that the Ca2+-dependent astrocyte hyperactivity is associated with the development of many neurodegenerative disorders including Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), Huntington’s disease (HD), fragile X syndrome (FXS) and Parkinson’s disease (PD). In addition, persistent Ca2+ waves in astrocytes in acute conditions such as stroke, traumatic brain injury and epilepsy cause neurological problems by increasing gliotransmitter (glutamate and ATP)-induced neural cell death. Although the secretion of neurotransmitters is normal, the impairment of Ca2+ activity-dependent responders is also associated with the development and progression of several neurodegenerative diseases. In this chapter, we focus on regulatory function of calcium in neurological disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexianu ME, Ho BK, Mohamed AH, La Bella V, Smith RG, Appel SH (1994) The role of calcium-binding proteins in selective motoneuron vulnerability in amyotrophic lateral sclerosis. Ann Neurol 36:846–858

    Article  CAS  PubMed  Google Scholar 

  • Atherton J, Kurbatskaya K, Bondulich M, Croft CL, Garwood CJ, Chhabra R, Wray S, Jeromin A, Hanger DP, Noble W (2014) Calpain cleavage and inactivation of the sodium calcium exchanger-3 occur downstream of Abeta in Alzheimer’s disease. Aging Cell 13:49–59

    Article  CAS  PubMed  Google Scholar 

  • Bacaj T, Wu D, Yang X, Morishita W, Zhou P, Xu W, Malenka RC, Sudhof TC (2013) Synaptotagmin-1 and synaptotagmin-7 trigger synchronous and asynchronous phases of neurotransmitter release. Neuron 80:947–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bal M, Leitz J, Reese AL, Ramirez DM, Durakoglugil M, Herz J, Monteggia LM, Kavalali ET (2013) Reelin mobilizes a VAMP7-dependent synaptic vesicle pool and selectively augments spontaneous neurotransmission. Neuron 80:934–946

    Article  CAS  PubMed  Google Scholar 

  • Bano D, Zanetti F, Mende Y, Nicotera P (2011) Neurodegenerative processes in huntington’s disease. Cell Death Dis 2:e228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beqollari D, Romberg CF, Dobrowolny G, Martini M, Voss AA, Musaro A, Bannister RA (2016) Progressive impairment of CaV1.1 function in the skeletal muscle of mice expressing a mutant type 1 Cu/Zn superoxide dismutase (G93A) linked to amyotrophic lateral sclerosis. Skelet Muscle 6:24

    Article  PubMed  PubMed Central  Google Scholar 

  • Bezprozvanny IB (2010) Calcium signaling and neurodegeneration. Acta Nat 2:72–82

    CAS  Google Scholar 

  • Bezprozvanny I, Hayden MR (2004) Deranged neuronal calcium signaling and huntington disease. Biochem Biophys Res Commun 322:1310–1317

    Article  CAS  PubMed  Google Scholar 

  • Bossy-Wetzel E, Petrilli A, Knott AB (2008) Mutant huntingtin and mitochondrial dysfunction. Trends Neurosci 31:609–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burre J, Sharma M, Tsetsenis T, Buchman V, Etherton MR, Sudhof TC (2010) Alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro. Sci 329:1663–1667

    Article  CAS  Google Scholar 

  • Cali T, Ottolini D, Brini M (2011) Mitochondria, calcium, and endoplasmic reticulum stress in parkinson’s disease. Biofactors 37:228–240

    Article  CAS  PubMed  Google Scholar 

  • Cali T, Ottolini D, Brini M (2014) Calcium signaling in Parkinson’s disease. Cell Tissue Res 357:439–454

    Article  CAS  PubMed  Google Scholar 

  • Cattaneo E, Zuccato C, Tartari M (2005) Normal huntingtin function: an alternative approach to Huntington’s disease. Nat Rev Neurosci 6:919–930

    Article  CAS  PubMed  Google Scholar 

  • Costa V, Scorrano L (2012) Shaping the role of mitochondria in the pathogenesis of huntington’s disease. EMBO J 31:1853–1864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Mario A, Scarlatti C, Costiniti V, Primerano S, Lopreiato R, Cali T, Brini M, Giacomello M, Carafoli E (2016) Calcium handling by endoplasmic reticulum and mitochondria in a cell model of huntington’s disease. PLOS Currents Huntington Disease. 2016 Jan 6 . Edition 1. doi:10.1371/currents.hd.37fcb1c9a27503dc845594ee4a7316c3

  • Eguiagaray JG, Egea J, Bravo-Cordero JJ, Garcia AG (2004) Neurotransmitters, calcium signalling and neuronal communication. Neurocirugia (Astur) 15:109–118

    Article  CAS  Google Scholar 

  • Ermolyuk YS, Alder FG, Surges R, Pavlov IY, Timofeeva Y, Kullmann DM, Volynski KE (2013) Differential triggering of spontaneous glutamate release by P/Q-, N- and R-type Ca2+ channels. Nat Neurosci 16:1754–1763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganguly G, Chakrabarti S, Chatterjee U, Saso L (2017) Proteinopathy, oxidative stress and mitochondrial dysfunction: cross talk in Alzheimer’s disease and Parkinson’s disease. Drug Des Devel Ther 11:797–810

    Article  PubMed  PubMed Central  Google Scholar 

  • Gardoni F, Bellone C (2015) Modulation of the glutamatergic transmission by dopamine: a focus on Parkinson, Huntington and addiction diseases. Front Cell Neurosci 9:25

    Article  PubMed  PubMed Central  Google Scholar 

  • Giacomello M, Oliveros JC, Naranjo JR, Carafoli E (2013) Neuronal ca(2+) dyshomeostasis in huntington disease. Prion 7:76–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grosskreutz J, Van Den Bosch L, Keller BU (2010) Calcium dysregulation in amyotrophic lateral sclerosis. Cell Calcium 47:165–174

    Article  CAS  PubMed  Google Scholar 

  • Guzman JN, Sanchez-Padilla J, Wokosin D, Kondapalli J, Ilijic E, Schumacker PT, Surmeier DJ (2010) Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1. Nat 468:696–700

    Article  CAS  Google Scholar 

  • Harada K, Kamiya T, Tsuboi T (2015) Gliotransmitter release from Astrocytes: functional, developmental, and pathological implications in the brain. Front Neurosci 9:499

    PubMed  Google Scholar 

  • Jaiswal MK (2014) Selective vulnerability of motoneuron and perturbed mitochondrial calcium homeostasis in amyotrophic lateral sclerosis: implications for motoneurons specific calcium dysregulation. Mol Cell Therapeutics 2:26

    Article  Google Scholar 

  • Jorquera RA, Huntwork-Rodriguez S, Akbergenova Y, Cho RW, Littleton JT (2012) Complexin controls spontaneous and evoked neurotransmitter release by regulating the timing and properties of synaptotagmin activity. J Neurosci 32:18234–18245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaeser PS, Regehr WG (2014) Molecular mechanisms for synchronous, asynchronous, and spontaneous neurotransmitter release. Annu Rev Physiol 76:333–363

    Article  CAS  PubMed  Google Scholar 

  • Kavalali ET (2015) The mechanisms and functions of spontaneous neurotransmitter release. Nat Rev Neurosci 16:5–16

    Article  CAS  PubMed  Google Scholar 

  • Kawahara Y, Kwak S, Sun H, Ito K, Hashida H, Aizawa H, Jeong SY, Kanazawa I (2003) Human spinal motoneurons express low relative abundance of GluR2 mRNA: an implication for excitotoxicity in ALS. J Neurochem 85:680–689

    Article  CAS  PubMed  Google Scholar 

  • Kawamoto EM, Vivar C, Camandola S (2012) Physiology and pathology of calcium signaling in the brain. Front Pharmacol 3:61

    Article  PubMed  PubMed Central  Google Scholar 

  • LaFerla FM (2002) Calcium dyshomeostasis and intracellular signalling in Alzheimer’s disease. Nat Rev Neurosci 3:862–872

    Article  CAS  PubMed  Google Scholar 

  • Liu G-P, Yan J-J, Wang Y-Q, Fu J-J, Xu Z-X, Guo R, Qia P (2012) Application of multilabel learning using the relevant feature for each label in chronic gastritis syndrome diagnosis. Evid Based Complement Alternat Med 1:1–9

    CAS  Google Scholar 

  • Lombardo S, Maskos U (2015) Role of the nicotinic acetylcholine receptor in Alzheimer’s disease pathology and treatment. Neuropharmacol 96:255–262

    Article  CAS  Google Scholar 

  • Magi S, Castaldo P, Macri ML, Maiolino M, Matteucci A, Bastioli G, Gratteri S, Amoroso S, Lariccia V (2016) Intracellular calcium Dysregulation: implications for Alzheimer’s disease. Biomed Res Int 2016:6701324

    Article  PubMed  PubMed Central  Google Scholar 

  • Peters JH, McDougall SJ, Fawley JA, Smith SM, Andresen MC (2010) Primary afferent activation of thermosensitive TRPV1 triggers asynchronous glutamate release at central neurons. Neuron 65:657–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pieri M, Caioli S, Canu N, Mercuri NB, Guatteo E, Zona C (2013) Over-expression of N-type calcium channels in cortical neurons from a mouse model of amyotrophic lateral sclerosis. Exp Neurol 247:349–358

    Article  CAS  PubMed  Google Scholar 

  • Prell T, Lautenschlager J, Witte OW, Carri MT, Grosskreutz J (2012) The unfolded protein response in models of human mutant G93A amyotrophic lateral sclerosis. Eur J Neurosci 35:652–660

    Article  CAS  PubMed  Google Scholar 

  • Prell T, Lautenschlager J, Grosskreutz J (2013) Calcium-dependent protein folding in amyotrophic lateral sclerosis. Cell Calcium 54:132–143

    Article  CAS  PubMed  Google Scholar 

  • Quik M, Perez XA, Bordia T (2012) Nicotine as a potential neuroprotective agent for Parkinson’s disease. Mov Disord 27:947–957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raingo J, Khvotchev M, Liu P, Darios F, Li YC, Ramirez DM, Adachi M, Lemieux P, Toth K, Davletov B, Kavalali ET (2012) VAMP4 directs synaptic vesicles to a pool that selectively maintains asynchronous neurotransmission. Nat Neurosci 15:738–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rcom-H’cheo-Gauthier A, Goodwin J, Pountney DL (2014) Interactions between calcium and alpha-synuclein in neurodegeneration. Biomol Ther 4:795–811

    Google Scholar 

  • Reiner A, Dragatsis I, Zeitlin S, Goldowitz D (2003) Wild-type huntingtin plays a role in brain development and neuronal survival. Mol Neurobiol 28:259–276

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro FM, Hamilton A, Doria JG, Guimaraes IM, Cregan SP, Ferguson SS (2014) Metabotropic glutamate receptor 5 as a potential therapeutic target in Huntington’s disease. Expert Opin Therapetuics Targets 18:1293–1304

    Article  CAS  Google Scholar 

  • Rivero-Rios P, Gomez-Suaga P, Fdez E, Hilfiker S (2014) Upstream deregulation of calcium signaling in Parkinson’s disease. Front Mol Neurosci 7:53

    PubMed  PubMed Central  Google Scholar 

  • Sandebring A, Thomas KJ, Beilina A, van der Brug M, Cleland MM, Ahmad R, Miller DW, Zambrano I, Cowburn RF, Behbahani H, Cedazo-Minguez A, Cookson MR (2009) Mitochondrial alterations in PINK1 deficient cells are influenced by calcineurin-dependent dephosphorylation of dynamin-related protein 1. PLoS One 4:e5701

    Article  PubMed  PubMed Central  Google Scholar 

  • Schulte J, Littleton JT (2011) The biological function of the Huntingtin protein and its relevance to Huntington’s disease pathology. Curr Trends Neurol 5:65–78

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shoudai K, Peters JH, McDougall SJ, Fawley JA, Andresen MC (2010) Thermally active TRPV1 tonically drives central spontaneous glutamate release. J Neurosci 30:14470–14475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simard M, Nedergaard M (2004) The neurobiology of glia in the context of water and ion homeostasis. Neurosci 129:877–896

    Article  CAS  Google Scholar 

  • Song C, Zhang Y, Parsons CG, Liu YF (2003) Expression of polyglutamine-expanded huntingtin induces tyrosine phosphorylation of N-methyl-D-aspartate receptors. J Biol Chem 278:33364–33369

    Article  CAS  PubMed  Google Scholar 

  • Sudhof TC (2012) Calcium control of neurotransmitter release. Cold Spring Harb Perspect Biol 4:a011353

    Article  PubMed  PubMed Central  Google Scholar 

  • Supnet C, Bezprozvanny I (2010a) The dysregulation of intracellular calcium in Alzheimer disease. Cell Calcium 47:183–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Supnet C, Bezprozvanny I (2010b) Neuronal calcium signaling, mitochondrial dysfunction, and Alzheimer’s disease. J of Alzheimers Dis 20(Suppl 2):S487–S498

    Article  Google Scholar 

  • Tang TS, Tu H, Chan EY, Maximov A, Wang Z, Wellington CL, Hayden MR, Bezprozvanny I (2003) Huntingtin and huntingtin-associated protein 1 influence neuronal calcium signaling mediated by inositol-(1,4,5) triphosphate receptor type 1. Neuron 39:227–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thayer DA, Jan YN, Jan LY (2013) Increased neuronal activity fragments the Golgi complex. Proc Natl Acad Sci U S A 110:1482–1487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Damme P, Braeken D, Callewaert G, Robberecht W, Van Den Bosch L (2005) GluR2 deficiency accelerates motor neuron degeneration in a mouse model of amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 64:605–612

    Article  PubMed  Google Scholar 

  • von Lewinski F, Keller BU (2005) Ca2+, mitochondria and selective motoneuron vulnerability: implications for ALS. Trends Neurosci 28:494–500

    Google Scholar 

  • Vyleta NP, Smith SM (2011) Spontaneous glutamate release is independent of calcium influx and tonically activated by the calcium-sensing receptor. J Neurosci 31:4593–4606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Lim PJ, Karbowski M, Monteiro MJ (2009) Effects of overexpression of huntingtin proteins on mitochondrial integrity. Hum Mol Genet 18:737–752

    Article  CAS  PubMed  Google Scholar 

  • Wen H, Hubbard JM, Rakela B, Linhoff MW, Mandel G, Brehm P (2013) Synchronous and asynchronous modes of synaptic transmission utilize different calcium sources. eLife 2:e01206

    Article  PubMed  PubMed Central  Google Scholar 

  • Williams C, Chen W, Lee CH, Yaeger D, Vyleta NP, Smith SM (2012) Coactivation of multiple tightly coupled calcium channels triggers spontaneous release of GABA. Nat Neurosci 15:1195–1197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao J, Gaffaney JD, Kwon SE, Chapman ER (2011) Doc2 is a Ca2+ sensor required for asynchronous neurotransmitter release. Cell 147:666–677

    Google Scholar 

  • Yoshihara M, Guan Z, Littleton JT (2010) Differential regulation of synchronous versus asynchronous neurotransmitter release by the C2 domains of synaptotagmin 1. Proc Natl Acad Sci U S A 107:14869–14874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeitlin S, Liu JP, Chapman DL, Papaioannou VE, Efstratiadis A (1995) Increased apoptosis and early embryonic lethality in mice nullizygous for the Huntington’s disease gene homologue. Nat Genet 11:155–163

    Article  CAS  PubMed  Google Scholar 

  • Zuccato C, Valenza M, Cattaneo E (2010) Molecular mechanisms and potential therapeutical targets in Huntington’s disease. Physiol Rev 90:905–981

    Article  CAS  PubMed  Google Scholar 

  • Zundorf G, Reiser G (2011) The phosphorylation status of extracellular-regulated kinase 1/2 in astrocytes and neurons from rat hippocampus determines the thrombin-induced calcium release and ROS generation. J Neurochem 119:1194–1204

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Rajagopal, S., Ponnusamy, M. (2017). Calcium Signalling in Neurological Disorders. In: Calcium Signaling: From Physiology to Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-10-5160-9_4

Download citation

Publish with us

Policies and ethics