Satellite Image Compression-Detailed Survey of the Algorithms

Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 14)

Abstract

Image compression is the process of reducing the size of the image without compromising image quality to an unacceptable level. Satellite image compression is very much essential since the size of high resolution images generated by satellite imaging systems is huge, which leads to higher memory requirements on-board and high capacity communication links. In this paper, a literature survey of various satellite image compression algorithms is presented. Proposed work aims at a comparative study of various methods employed for compression of satellite images captured through different spectral imaging systems. Algorithms are compared with respect to comparison parameters like compression ratio, bits per pixel, complexity, error resilience and peak signal to noise ratio. The idea of hybrid algorithm is recommended from the study.

References

  1. 1.
    Ryan MJ, Arnold JF (1997) The lossless compression of AVIRIS images by vector quantization. IEEE Trans Geosci Remote Sens 35(3):546–550CrossRefGoogle Scholar
  2. 2.
    Pickering MR, Ryan MJ (2001) Efficient spatial-spectral compression of hyperspectral data. IEEE Trans Geosci Remote Sens 39(7):1536–1539CrossRefGoogle Scholar
  3. 3.
    Motta G, Rizzo F, Storer J (2003) Partitioned vector quantization: application to lossless compression of hyperspectral images. In: Proceeding of ICASSP, vol. 3, pp. 241–244, 6–10 Apr 2003Google Scholar
  4. 4.
    Motta G, Rizzo F, Storer JA (2003) Compression of hyperspectral imagery. In: Proceedings of DCC, pp. 333–342, 2003 MarGoogle Scholar
  5. 5.
    Wu X, Memon N (1997) Context-based, adaptive, lossless image coding. IEEE Trans Commun 45(4):437–444CrossRefGoogle Scholar
  6. 6.
    Wu X, Memon N (2000) Context-based lossless interband compression-extending CALIC. IEEE Trans Image Process 9(6):994–1001CrossRefGoogle Scholar
  7. 7.
    Magli E, Olmo G, Quacchio E (2004) Optimized onboard lossless and near-lossless compression of hyperspectral data using CALIC. IEEE Geosci Remote Sens Lett 1(1):21–25CrossRefGoogle Scholar
  8. 8.
    Rizzo F, Carpentieri B, Motta G, Storer JA (2004) High performance compression of hyperspectral imagery with reduced search complexity in the compressed domain. In: Proceedings of DCC, pp. 479–488, 23–25 Mar 2004Google Scholar
  9. 9.
    Rizzo F, Carpentieri B, Motta G, Storer JA (2005) Low-complexity lossless compression of hyperspectral imagery via linear prediction. IEEE Signal Process Lett 12(2):138–141CrossRefGoogle Scholar
  10. 10.
    Mielikainen J, Toivanen P (2003) Clustered DPCM for the lossless compression of hyperspectral images. IEEE Trans Geosci Remote Sens 41(12):2943–2946CrossRefMATHGoogle Scholar
  11. 11.
    Wang H, Babacan SD, Sayood K (2007) Lossless hyperspectral-image compression using context-based conditional average. IEEE Trans Geosci Remote Sens 45(12): 4187–4193Google Scholar
  12. 12.
    Magli E, Barni M, Abrardo A, Grangetto M (2007) Distributed source coding techniques for lossless compression of hyperspectral images. EURASIP J Adv Signal Process 2007(1):24MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Abrardo A, Barni M, Magli E, Nencini F (2010) Error-resilient and low-complexity onboard lossless compression of hyperspectral images by means of distributed source coding. IEEE Trans. Geosci. Remote Sens. 48(4): 1892–1904Google Scholar
  14. 14.
    Mielikainen J, Toivanen P, Kaarna A (2003) Linear prediction in lossless compression of hyperspectral images. Opt Eng 42(4):1013–1017CrossRefMATHGoogle Scholar
  15. 15.
    Klimesh M (2005) Low-complexity lossless compression of hyperspectral imagery via adaptive filtering. JPL 15:1–10Google Scholar
  16. 16.
    Magli E (2007) Multiband lossless compression of hyperspectral images. IEEE Trans Geosci Remote SensGoogle Scholar
  17. 17.
    Chen Y, Shi Z, Li D (2009) Lossless compression of hyperspectral image based on 3DLMS Prediction. IEEE Trans Signal ProcessGoogle Scholar
  18. 18.
    Zhang J, Liu G (2007) An efficient reordering prediction-based lossless compression algorithm for hyperspectral images. IEEE Geosci Remote Sens Lett 4(2):283–287CrossRefGoogle Scholar
  19. 19.
    Lim S, Sohn K, Lee C (2001) Compression for hyperspectral images using three dimensional wavelet transform. In: Proceedings of IGARSS, Sydney, Australia, 2001, pp. 109–111Google Scholar
  20. 20.
    Abousleman GP, Marcellin MW, Hunt BR (1995) Compression of hyperspectral imagery using the 3-D DCT and hybrid DPCM-DCT. IEEE Trans Geosci Remote Sens 33(1):26–34CrossRefGoogle Scholar
  21. 21.
    Tang X, Pearlman WA (2005) Three-dimensional wavelet-based compression of hyperspectral images. Hyperspectral data compression, Norwell, MA, KluwerGoogle Scholar
  22. 22.
    Wang Y, Rucker JT, Fowler JE (2004) Three-dimensional tarp coding for the compression of hyperspectral images. IEEE Geosci Remote Sens Lett 1(2):136–140CrossRefGoogle Scholar
  23. 23.
    Penna B, Tillo T, Magli E, Olmo G (2007) Transform coding techniques for lossy hyperspectral data compression. IEEE Trans Geosci Remote Sens 45(5):1408–1421CrossRefGoogle Scholar
  24. 24.
    Weinberger MJ, Seroussi G, Sapiro G (2000) The LOCO-I lossless image compression algorithm: principles and standardization into JPEG-LS. IEEE Trans Image Process 9(8):1309–1324CrossRefGoogle Scholar
  25. 25.
    Taubman DS, Marcellin, MW (2001) JPEG2000: Image compression fundamentals, standards, and practice. Norwell, MA, KluwerGoogle Scholar
  26. 26.
    Slyz M, Zhang L (2005) A block-based inter-band lossless hyperspectral image compressor. In: Proceedings of DCC, pp. 427–436, 29–31 Mar 2005Google Scholar
  27. 27.
    Mielikainen J (2006) Lossless compression of hyperspectral images using lookup tables. IEEE Signal Process Lett 13(3):157–160CrossRefGoogle Scholar
  28. 28.
    Huang B, Sriraja, Y (2006) Lossless compression of hyperspectral imagery via lookup tables with predictor selection. In: Proceedings of SPIE, vol. 6365, pp. 63650L-1–63650L-8, 2006 OctGoogle Scholar
  29. 29.
    Aiazzi B, Alparone L, Baronti S, Lastri C (2007) Crisp and fuzzy adaptive spectral predictions for lossless and near-lossless compression of hyperspectral imagery. IEEE Geosci Remote Sens Lett 4(4):532–536CrossRefGoogle Scholar
  30. 30.
    Kiely AB, Klimesh MA (2009) Exploiting calibration-induced artifacts in lossless compression of hyperspectral imagery. IEEE Trans Geosci Remote Sens 47(8):2672–2678CrossRefGoogle Scholar
  31. 31.
    Penna B, Tillo T, Magli E, Olmo G (2006) A new low complexity KLT for Lossy hyperspectral data compression, IEEEGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Nitte Meenakshi Institute of TechnologyBengaluruIndia

Personalised recommendations