Skip to main content

Production of Furanic Biofuels with Zeolite and Metal Oxide Bifunctional Catalysts for Energy-and Product-Driven Biorefineries

  • Chapter
  • First Online:
Production of Biofuels and Chemicals with Bifunctional Catalysts

Part of the book series: Biofuels and Biorefineries ((BIOBIO,volume 8))

Abstract

In the last years, research on the transformation of biomass into different compounds has grown significantly with the motivation being to reduce the dependency of oil and to develop of sustainable and environmental friendly energy sources. In this context biomass appears to be as the only renewable source of carbon that is able to provide a substitute for fossil fuels. In the near future, bio-refineries, in which biomass is catalytically converted into pharmaceuticals, agricultural chemicals, plastics and transportation fuels will take the place of current petrochemical plants. Among the transportation fuels, furanic biofuels as 2,5-dimethylfuran (DMF) and 2-methylfuran (2-MF) have good performance as a fuel for direct injection spark ignition type engines without important modifications of the engine. The transformation of biomass into furanic biofuel compounds takes place via 5 hydroxymethylfurfural (HMF) in the case of the DMF and 2-MF; in the case of the 2-MF it can be also produced from furfural (FF) via furfuryl alcohol (FOL). In these reactions it is necessary to employ of bifunctional catalysts for the hydrogenolysis. Metals are required to fix the hydrogen reaction and sometimes for the C–O and C–C bonds cleavage and the acid-base supports of the dehydration, for the C–C and C–O bonds scissions. This chapter provides an overview of current methods for converting biomass to furanic biofuels with zeolite and metal oxide bifunctional catalysts. The chapter provides state-of-the-art overview on furanic biofuel production from biomass with a brief description of the DMF production process and the 2-MF production process. Use of different bifunctional catalysts for the DMF production process and the 2-MF production process is described. The influence of the support and that of different metals will be discussed along with properties of the bifunctional catalysts like metal dispersion, catalysts acidity and operating conditions. Finally, the use of different solvents to improve the yield of biofuels will be analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nishimura S, Ikeda N, Ebitani K. Selective hydrogenation of biomass-derived 5-hydroxymethylfurfural (HMF) to 2,5-dimethylfuran (DMF) under atmospheric hydrogen pressure over carbon supported PdAu bimetallic catalyst. Catal Today. 2014;232:89–98. https://doi.org/10.1016/j.cattod.2013.10.012.

    Article  CAS  Google Scholar 

  2. Zu Y, Yang P, Wang J, et al. Efficient production of the liquid fuel 2,5-dimethylfuran from 5-hydroxymethylfurfural over Ru/Co3O4 catalyst. Appl Catal B Environ. 2014;146:244–8. https://doi.org/10.1016/j.apcatb.2013.04.026.

    Article  CAS  Google Scholar 

  3. International Energy Agency (IEA). Key world energy statistics. International Energy Agency, Paris; 2016.

    Google Scholar 

  4. International Energy Agency (IEA) (2016) World Energy Outlook 2016. doi:http://www.iea.org/publications/freepublications/publication/WEB_WorldEnergyOutlook2015ExecutiveSummaryEnglishFinal.pdf

    Google Scholar 

  5. International Energy Agency (2016) Key Oil Trends.

    Google Scholar 

  6. International Energy Agency (IEA) (2016) Key world energy trends – excerpt from: world energy balances.

    Google Scholar 

  7. Zhang M, Tong X, Ma R, Li Y. Catalytic transformation of carbohydrates into 5-hydroxymethyl furfural over tin phosphate in a water-containing system. Catal Today. 2016;264:131–5. https://doi.org/10.1016/j.cattod.2015.06.031.

    Article  CAS  Google Scholar 

  8. Yang P, Cui Q, Zu Y, et al. Catalytic production of 2,5-dimethylfuran from 5-hydroxymethylfurfural over Ni/Co3O4 catalyst. Catal Commun. 2015;66:55–9. https://doi.org/10.1016/j.catcom.2015.02.014.

    Article  CAS  Google Scholar 

  9. De S, Saha B, Luque R. Hydrodeoxygenation processes: advances on catalytic transformations of biomass-derived platform chemicals into hydrocarbon fuels. Bioresour Technol. 2015;178:108–18. https://doi.org/10.1016/j.biortech.2014.09.065.

    Article  CAS  PubMed  Google Scholar 

  10. (2012) Green Chemistry. Fraunhofer magazine 2.12.

    Google Scholar 

  11. Qian Y, Zhu L, Wang Y, Lu X. Recent progress in the development of biofuel 2,5-dimethylfuran. Renew Sust Energ Rev. 2015;41:633–46. https://doi.org/10.1016/j.rser.2014.08.085.

    Article  CAS  Google Scholar 

  12. International Energy Agency (IEA) (2015) CO2 Emissions from fuel combustion. Highlights doi: https://doi.org/10.1787/co2-table-2011-1-en.

  13. Centi G (Gabriele), Santen RA van (Rutger A., Wiley InterScience (Online service). Catalysis for renewables: from feedstock to energy production; 2008. doi:https://doi.org/10.1002/9783527621118

  14. Kamm B, Gruber PR, Kamm M. Biorefineries – industrial processes and products: status quo and future directions. Weinheim: Wiley-VCH; 2010

    Google Scholar 

  15. Corma A, Iborra S, Velty A. Chemical routes for the transformation of biomass into chemicals. Chem Rev. 2007;107:2411–502. https://doi.org/10.1021/cr050989d.

    Article  CAS  PubMed  Google Scholar 

  16. Rosatella AA, Simeonov SP, Frade RFM, Afonso CAM. 5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications. Green Chem. 2011;13:754–93. https://doi.org/10.1039/C0GC00401D.

    Article  CAS  Google Scholar 

  17. Iriondo A, Mendiguren A, Güemez MB, et al. 2,5-DMF production through hydrogenation of real and synthetic 5-HMF over transition metal catalysts supported on carriers with different nature. Catal Today. 2017;279:286–95. https://doi.org/10.1016/j.cattod.2016.02.019.

    Article  CAS  Google Scholar 

  18. Menon V, Rao M. Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog Energy Combust Sci. 2012;38:522–50. https://doi.org/10.1016/j.pecs.2012.02.002.

    Article  CAS  Google Scholar 

  19. Climent MJ, Corma A, Iborra S. Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chem. 2014;16:516–47. https://doi.org/10.1039/C3GC41492B.

    Article  CAS  Google Scholar 

  20. Jungmeier G, van Ree R, Jorgensen H, et al. The biorefinery fact sheet; 2014.

    Google Scholar 

  21. IEA Bioenergy. IEA Bioenergy Task 42 Biorefinery; 2010.

    Google Scholar 

  22. Cherubini F, Jungmeier G, Wellisch M, et al. Toward a common classification approach for biorefinery systems. Biofuels Bioprod Biorefin. 2009;3:534–46. https://doi.org/10.1002/bbb.172.

    Article  CAS  Google Scholar 

  23. Choi S, Song CW, Shin JH, Lee SY. Biorefineries for the production of top building block chemicals and their derivatives. Metab Eng. 2015;28:223–39. https://doi.org/10.1016/j.ymben.2014.12.007.

    Article  CAS  PubMed  Google Scholar 

  24. Kamm B, Kamm M. Principles of biorefineries. Appl Microbiol Biotechnol. 2004;64:137–45. https://doi.org/10.1007/s00253-003-1537-7.

    Article  CAS  PubMed  Google Scholar 

  25. Jiménez-Gómez CP, Cecilia JA, Márquez-Rodríguez I, et al. Gas-phase hydrogenation of furfural over Cu/CeO2 catalysts. Catal Today. 2017;279:327–38. https://doi.org/10.1016/j.cattod.2016.02.014.

    Article  CAS  Google Scholar 

  26. Schlaf M. Homogeneous catalysts for the hydrodeoxygenation of biomass-derived carbohydrate feedstocks. In: Schlaf M, Zhang ZC, editors. Reaction pathways mechanisms thermocatalytic biomass conversion II homogeneously catalyzed transformations acrylics from biomass, theoretical aspectd lignin valorization pyrolysis pathways. Singapore: Springer; 2016. p. 13–38.

    Chapter  Google Scholar 

  27. Alam MI. Chapter 4 – catalysis for the production of sustainable chemicals and fuels from biomass. In: Sustain Catal Process 2015. p 99–123.

    Google Scholar 

  28. Xiong K, Wan W, Chen JG. Reaction pathways of furfural, furfuryl alcohol and 2-methylfuran on Cu(111) and NiCu bimetallic surfaces. Surf Sci. 2016;652:91–7. https://doi.org/10.1016/j.susc.2016.02.011.

    Article  CAS  Google Scholar 

  29. Aresta M, Angela D, Franck D. Biorefinery, From Biomass to Chemicals and Fuels. 2012. doi:https://doi.org/10.1515/9783110260281.

  30. Agirrezabal-Telleria I, Larreategui A, Requies J, et al. Furfural production from xylose using sulfonic ion-exchange resins (Amberlyst) and simultaneous stripping with nitrogen. Bioresour Technol. 2011;102:7478–85. https://doi.org/10.1016/j.biortech.2011.05.015.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang Y, Zhang J, Su D. 5-Hydroxymethylfurfural: Akey intermediate for efficient biomass conversion. J Energy Chem. 2015;24:548–51. https://doi.org/10.1016/j.jechem.2015.09.005.

    Article  CAS  Google Scholar 

  32. Roman-Leshkov Y, Barrett CJ, Liu ZY, Dumesic JA. Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature. 2007;447:982–5.

    Article  CAS  PubMed  Google Scholar 

  33. Zhao J, Zhou C, He C, et al. Efficient dehydration of fructose to 5-hydroxymethylfurfural over sulfonated carbon sphere solid acid catalysts. Catal Today. 2016;264:123–30. https://doi.org/10.1016/j.cattod.2015.07.005.

    Article  CAS  Google Scholar 

  34. Malinowski A, Wardzińska D. Catalytic conversion of furfural towards fuel biocomponents. Chemik. 2012;66:987–90.

    Google Scholar 

  35. Bond JQ, Upadhye AA, Olcay H, et al. Production of renewable jet fuel range alkanes and commodity chemicals from integrated catalytic processing of biomass. Energy Environ Sci. 2014;7:1500–23. https://doi.org/10.1039/C3EE43846E.

    Article  CAS  Google Scholar 

  36. Chheda JN, Roman-Leshkov Y, Dumesic JA. Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived mono- and poly-saccharides. Green Chem. 2007;9:342–50. https://doi.org/10.1039/B611568C.

    Article  CAS  Google Scholar 

  37. Kunkes EL, Simonetti DA, West RM, et al. Catalytic conversion of biomass to monofunctional hydrocarbons and targeted liquid-fuel classes. Science. 2008;322(80):417 LP–421.

    Article  CAS  Google Scholar 

  38. Bond JQ, Alonso DM, Wang D, et al. Integrated catalytic conversion of γ-valerolactone to liquid alkenes for transportation fuels. Science. 2010;327(80):1110 LP–1114.

    Article  CAS  Google Scholar 

  39. Xing R, Subrahmanyam AV, Olcay H, et al. Production of jet and diesel fuel range alkanes from waste hemicellulose-derived aqueous solutions. Green Chem. 2010;12:1933–46. https://doi.org/10.1039/C0GC00263A.

    Article  CAS  Google Scholar 

  40. Olcay H, Subrahmanyam AV, Xing R, et al. Production of renewable petroleum refinery diesel and jet fuel feedstocks from hemicellulose sugar streams. Energy Environ Sci. 2013;6:205–16. https://doi.org/10.1039/C2EE23316A.

    Article  CAS  Google Scholar 

  41. Yang J, Li N, Li G, et al. Synthesis of renewable high-density fuels using cyclopentanone derived from lignocellulose. Chem Commun. 2014;50:2572–4. https://doi.org/10.1039/C3CC46588H.

    Article  CAS  Google Scholar 

  42. Sheng X, Li N, Li G, et al. Synthesis of high density aviation fuel with cyclopentanol derived from lignocellulose. Sci Rep. 2015;5:9565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yang J, Li S, Li N, et al. Synthesis of Jet-Fuel Range Cycloalkanes from the Mixtures of Cyclopentanone and Butanal. Ind Eng Chem Res. 2015;54:11825–37. https://doi.org/10.1021/acs.iecr.5b03379.

    Article  CAS  Google Scholar 

  44. Xiao H, Zeng P, Li Z, et al. Combustion performance and emissions of 2-methylfuran diesel blends in a diesel engine. Fuel. 2016;175:157–63. https://doi.org/10.1016/j.fuel.2016.02.006.

    Article  CAS  Google Scholar 

  45. Shi J, Wang Y, Yu X, et al. Production of 2,5-dimethylfuran from 5-hydroxymethylfurfural over reduced graphene oxides supported Pt catalyst under mild conditions. Fuel. 2016;163:74–9. https://doi.org/10.1016/j.fuel.2015.09.047.

    Article  CAS  Google Scholar 

  46. Wang C, Xu H, Daniel R, et al. Combustion characteristics and emissions of 2-methylfuran compared to 2,5-dimethylfuran, gasoline and ethanol in a DISI engine. Fuel. 2013;103:200–11. https://doi.org/10.1016/j.fuel.2012.05.043.

    Article  CAS  Google Scholar 

  47. Xu N, Wu Y, Tang C, et al. Experimental study of 2,5-dimethylfuran and 2-methylfuran in a rapid compression machine: Comparison of the ignition delay times and reactivity at low to intermediate temperature. Combust Flame. 2016;168:216–27. https://doi.org/10.1016/j.combustflame.2016.03.016.

    Article  CAS  Google Scholar 

  48. Jężak S, Dzida M, Zorębski M. High pressure physicochemical properties of 2-methylfuran and 2,5-dimethylfuran – second generation biofuels. Fuel. 2016;184:334–43. https://doi.org/10.1016/j.fuel.2016.07.025.

    Article  CAS  Google Scholar 

  49. Conturso M, Sirignano M, Anna AD. Effect of 2,5-dimethylfuran doping on particle size distributions measured in premixed ethylene/air flames. Proc Combust Inst. 2016; In press:1–8. doi:https://doi.org/10.1016/j.proci.2016.06.048.

  50. Wei H, Feng D, Shu G, et al. Experimental investigation on the combustion and emissions characteristics of 2-methylfuran gasoline blend fuel in spark-ignition engine. Appl Energy. 2014;132:317–24. https://doi.org/10.1016/j.apenergy.2014.07.009.

    Article  CAS  Google Scholar 

  51. Agirrezabal-Telleria I, Gandarias I, Arias PL. Heterogeneous acid-catalysts for the production of furan-derived compounds (furfural and hydroxymethylfurfural) from renewable carbohydrates: a review. Catal Today. 2014;234:42–58. https://doi.org/10.1016/j.cattod.2013.11.027.

    Article  CAS  Google Scholar 

  52. Zhang L, Xi G, Yu K, et al. Furfural production from biomass–derived carbohydrates and lignocellulosic residues via heterogeneous acid catalysts. Ind Crop Prod. 2017;98:68–75. https://doi.org/10.1016/j.indcrop.2017.01.014.

    Article  CAS  Google Scholar 

  53. Yong TL-K, Mohamad N, Yusof NNM. Furfural production from oil palm biomass using a biomass-derived supercritical ethanol solvent and formic acid catalyst. Procedia Eng. 2016;148:392–400. https://doi.org/10.1016/j.proeng.2016.06.495.

    Article  CAS  Google Scholar 

  54. Zhang L, Yu H, Wang P, et al. Conversion of xylan, d-xylose and lignocellulosic biomass into furfural using AlCl3 as catalyst in ionic liquid. Bioresour Technol. 2013;130:110–6. https://doi.org/10.1016/j.biortech.2012.12.018.

    Article  CAS  PubMed  Google Scholar 

  55. Zhang L, Xi G, Zhang J, et al. Efficient catalytic system for the direct transformation of lignocellulosic biomass to furfural and 5-hydroxymethylfurfural. Bioresour Technol. 2017;224:656–61. https://doi.org/10.1016/j.biortech.2016.11.097.

    Article  CAS  PubMed  Google Scholar 

  56. Li H, Fang Z, Smith RL, Yang S. Efficient valorization of biomass to biofuels with bifunctional solid catalytic materials. Prog Energy Combust Sci. 2016;55:98–194. https://doi.org/10.1016/j.pecs.2016.04.004.

    Article  Google Scholar 

  57. Chen D, Liang F, Feng D, et al. Sustainable utilization of lignocellulose: preparation of furan derivatives from carbohydrate biomass by bifunctional lignosulfonate-based catalysts. Catal Commun. 2016. https://doi.org/10.1016/j.catcom.2016.06.012.

  58. Shimanskaya M, Lukevits É. Catalytic reactions of furan compounds (review). Chem Heterocycl Compd. 1993;29:1000–11. https://doi.org/10.1007/BF00534382.

    Article  Google Scholar 

  59. Filiciotto L, Balu AM, Van der Waal JC, Luque R. Catalytic insights into the production of biomass-derived side products methyl levulinate, furfural and humins. Catal Today. 2017. https://doi.org/10.1016/j.cattod.2017.03.008.

  60. IKM Y, Tsang DCW. Conversion of biomass to hydroxymethylfurfural: a review of catalytic systems and underlying mechanisms. Bioresour Technol. 2017;238:716–32. https://doi.org/10.1016/j.biortech.2017.04.026.

    Article  CAS  Google Scholar 

  61. Peleteiro S, Rivas S, Alonso JL, et al. Furfural production using ionic liquids: a review. Bioresour Technol. 2016;202:181–91. https://doi.org/10.1016/j.biortech.2015.12.017.

    Article  CAS  PubMed  Google Scholar 

  62. Yoo CG, Pu Y, Ragauskas AJ. Ionic liquids: promising green solvents for lignocellulosic biomass utilization. Curr Opin Green Sustain Chem. 2017;5:5–11. https://doi.org/10.1016/j.cogsc.2017.03.003.

    Article  Google Scholar 

  63. Mukherjee A, Dumont M-J, Raghavan V. Review: sustainable production of hydroxymethylfurfural and levulinic acid: challenges and opportunities. Biomass Bioenergy. 2015;72:143–83. https://doi.org/10.1016/j.biombioe.2014.11.007.

    Article  CAS  Google Scholar 

  64. Emam E, Centi G, Perathoner S, Vaccari A. Clays as catalysts in petroleum refining industry. ARPN. J Sci Technol. 2013;3:356–75. https://doi.org/10.1016/S0169-1317(98)00058-1.

    Google Scholar 

  65. Wheeldon I, Christopher P, Blanch H. Integration of heterogeneous and biochemical catalysis for production of fuels and chemicals from biomass. Curr Opin Biotechnol. 2017;45:127–35. https://doi.org/10.1016/j.copbio.2017.02.019.

    Article  CAS  PubMed  Google Scholar 

  66. Moller M, Schroder U. Hydrothermal production of furfural from xylose and xylan as model compounds for hemicelluloses. RSC Adv. 2013;3:22253–60. https://doi.org/10.1039/C3RA43108H.

    Article  CAS  Google Scholar 

  67. Cortés W, Piñeiros-Castro Y, Campos Rosario AM. Conversion of d-xylose into furfural with aluminum and hafnium pillared clays as catalyst. DYNA. 2013;80:105–12.

    Google Scholar 

  68. Choudhary V, Pinar AB, Sandler SI, et al. Xylose isomerization to xylulose and its dehydration to furfural in aqueous media. ACS Catal. 2011;1:1724–8. https://doi.org/10.1021/cs200461t.

    Article  CAS  Google Scholar 

  69. Gao H, Liu H, Pang B, et al. Production of furfural from waste aqueous hemicellulose solution of hardwood over ZSM-5 zeolite. Bioresour Technol. 2014. https://doi.org/10.1016/j.biortech.2014.09.026.

  70. Choudhary V, Caratzoulas S, Vlachos DG. Insights into the isomerization of xylose to xylulose and lyxose by a Lewis acid catalyst. Carbohydr Res. 2013;368:89–95. https://doi.org/10.1016/j.carres.2012.12.019.

    Article  CAS  PubMed  Google Scholar 

  71. Metkar PS, Till EJ, Corbin DR, et al. Reactive distillation process for the production of furfural using solid acid catalysts. Green Chem. 2015;17:1453–66. https://doi.org/10.1039/C4GC01912A.

    Article  CAS  Google Scholar 

  72. Weingarten R, Tompsett GA, Conner WC, Huber GW. Design of solid acid catalysts for aqueous-phase dehydration of carbohydrates: the role of Lewis and Brønsted acid sites. J Catal. 2011;279:174–82. https://doi.org/10.1016/j.jcat.2011.01.013.

    Article  CAS  Google Scholar 

  73. You SJ, Park N, Park ED, Park M-J. Partial least squares modeling and analysis of furfural production from biomass-derived xylose over solid acid catalysts. J Ind Eng Chem. 2015;21:350–5. https://doi.org/10.1016/j.jiec.2014.02.044.

    Article  CAS  Google Scholar 

  74. Antunes MM, Lima S, Fernandes A, et al. Aqueous-phase dehydration of xylose to furfural in the presence of MCM-22 and ITQ-2 solid acid catalysts. Appl Catal A Gen. 2012;417:243–52. https://doi.org/10.1016/j.apcata.2011.12.046.

    Article  CAS  Google Scholar 

  75. Zhang L, Xi G, Chen Z, et al. Highly selective conversion of glucose into furfural over modified zeolites. Chem Eng J. 2017;307:868–76. https://doi.org/10.1016/j.cej.2016.09.001.

    Article  CAS  Google Scholar 

  76. Bhaumik P, Dhepe PL. Effects of careful designing of SAPO-44 catalysts on the efficient synthesis of furfural. Catal Today. 2015;251:66–72. https://doi.org/10.1016/j.cattod.2014.10.042.

    Article  CAS  Google Scholar 

  77. Bruce SM, Zong Z, Chatzidimitriou A, et al. Small pore zeolite catalysts for furfural synthesis from xylose and switchgrass in a γ-valerolactone/water solvent. J Mol Catal A Chem. 2016;422:18–22. https://doi.org/10.1016/j.molcata.2016.02.025.

    Article  CAS  Google Scholar 

  78. García-Sancho C, Agirrezabal-Telleria I, Güemez MB, Maireles-Torres P. Dehydration of d-xylose to furfural using different supported niobia catalysts. Appl Catal B Environ. 2014:152:1–10. https://doi.org/10.1016/j.apcatb.2014.01.013.

  79. García-Sancho C, Rubio-Caballero JM, Mérida-Robles JM, et al. Mesoporous Nb2O5 as solid acid catalyst for dehydration of d-xylose into furfural. Catal Today. 2014;234:119–24. https://doi.org/10.1016/j.cattod.2014.02.012.

    Article  CAS  Google Scholar 

  80. Pholjaroen B, Li N, Wang Z, et al. Dehydration of xylose to furfural over niobium phosphate catalyst in biphasic solvent system. J Energy Chem. 2013;22:826–32. https://doi.org/10.1016/S2095-4956(14)60260-6.

    Article  CAS  Google Scholar 

  81. Bhaumik P, Kane T, Dhepe PL. Silica and zirconia supported tungsten{,} molybdenum and gallium oxide catalysts for the synthesis of furfural. Cat Sci Technol. 2014;4:2904–7. https://doi.org/10.1039/C4CY00530A.

    Article  CAS  Google Scholar 

  82. Li L, Ding J, Jiang J-G, et al. One-pot synthesis of 5-hydroxymethylfurfural from glucose using bifunctional [Sn,Al]-Beta catalysts. Chinese J Catal. 2015;36:820–8. https://doi.org/10.1016/S1872-2067(14)60287-4.

    Article  CAS  Google Scholar 

  83. Zhang L, Xi G, Chen Z, et al. Enhanced formation of 5-HMF from glucose using a highly selective and stable SAPO-34 catalyst. Chem Eng J. 2017;307:877–83. https://doi.org/10.1016/j.cej.2016.09.003.

    Article  CAS  Google Scholar 

  84. Moreno-Recio M, Santamaría-González J, Maireles-Torres P. Brönsted and Lewis acid ZSM-5 zeolites for the catalytic dehydration of glucose into 5-hydroxymethylfurfural. Chem Eng J. 2016;303:22–30. https://doi.org/10.1016/j.cej.2016.05.120.

    Article  CAS  Google Scholar 

  85. Zhang M, Su K, Song H, et al. The excellent performance of amorphous Cr2O3, SnO2, SrO and graphene oxide–ferric oxide in glucose conversion into 5-HMF. Catal Commun. 2015;69:76–80. https://doi.org/10.1016/j.catcom.2015.05.024.

    Article  CAS  Google Scholar 

  86. Yang F, Li Y, Zhang Q, et al. Selective conversion of cotton cellulose to glucose and 5-hydroxymethyl furfural with SO42−/MxOy solid superacid catalyst. Carbohydr Polym. 2015;131:9–14. https://doi.org/10.1016/j.carbpol.2015.05.036.

    Article  CAS  PubMed  Google Scholar 

  87. Shirai H, Ikeda S, Qian EW. One-pot production of 5-hydroxymethylfurfural from cellulose using solid acid catalysts. Fuel Process Technol. 2017;159:280–6. https://doi.org/10.1016/j.fuproc.2016.10.005.

    Article  CAS  Google Scholar 

  88. Lopes M, Dussan K, Leahy JJ, da Silva VT. Conversion of d-glucose to 5-hydroxymethylfurfural using Al2O3-promoted sulphated tin oxide as catalyst. Catal Today. 2017;279:233–43. https://doi.org/10.1016/j.cattod.2016.05.030.

    Article  CAS  Google Scholar 

  89. Liu J, Li H, Liu Y-C, et al. Catalytic conversion of glucose to 5-hydroxymethylfurfural over nano-sized mesoporous Al2O3–B2O3 solid acids. Catal Commun. 2015. https://doi.org/10.1016/j.catcom.2015.01.008.

  90. Guo J, Zhu S, Cen Y, et al. Ordered mesoporous Nb–W oxides for the conversion of glucose to fructose, mannose and 5-hydroxymethylfurfural. Appl Catal B Environ. 2017;200:611–9. https://doi.org/10.1016/j.apcatb.2016.07.051.

    Article  CAS  Google Scholar 

  91. Zhong J, Guo Y, Chen J. Protonated and layered transition metal oxides as solid acids for dehydration of biomass-based fructose into 5-hydroxymethylfurfural. J Energy Chem. 2017;26:147–54. https://doi.org/10.1016/j.jechem.2016.09.010.

    Article  Google Scholar 

  92. Lv G, Deng L, Lu B, et al. Efficient dehydration of fructose into 5-hydroxymethylfurfural in aqueous medium over silica-included heteropolyacids. J Clean Prod. 2017;142:2244–51. https://doi.org/10.1016/j.jclepro.2016.11.053.

    Article  CAS  Google Scholar 

  93. Srivastava S, Jadeja GC, Parikh J. Synergism studies on alumina-supported copper-nickel catalysts towards furfural and 5-hydroxymethylfurfural hydrogenation. J Mol Catal A Chem. 2017;426:244–56. https://doi.org/10.1016/j.molcata.2016.11.023.

    Article  CAS  Google Scholar 

  94. Chen X, Wang X, Yao S, Mu X. Hydrogenolysis of biomass-derived sorbitol to glycols and glycerol over Ni-MgO catalysts. Catal Commun. 2013. https://doi.org/10.1016/j.catcom.2013.05.012.

  95. Balaraju M, Rekha V, Prasad PSS, et al. Influence of solid acids as co-catalysts on glycerol hydrogenolysis to propylene glycol over Ru/C catalysts. Appl Catal A Gen. 2009;354:82–7. https://doi.org/10.1016/j.apcata.2008.11.010.

    Article  CAS  Google Scholar 

  96. Gandarias I, Arias PL, Requies J, et al. Hydrogenolysis of glycerol to propanediols over a Pt/ASA catalyst: the role of acid and metal sites on product selectivity and the reaction mechanism. Appl Catal B Environ. 2010;97:248–56. https://doi.org/10.1016/j.apcatb.2010.04.008.

    Article  CAS  Google Scholar 

  97. Wang G-H, Hilgert J, Richter FH, et al. Platinum–cobalt bimetallic nanoparticles in hollow carbon nanospheres for hydrogenolysis of 5-hydroxymethylfurfural. Nat Mater. 2014;13:293–300.

    Article  PubMed  CAS  Google Scholar 

  98. Kusunoki Y, Miyazawa T, Kunimori K, Tomishige K. Highly active metal-acid bifunctional catalyst system for hydrogenolysis of glycerol under mild reaction conditions. Catal Commun. 2005;6:645–9. https://doi.org/10.1016/j.catcom.2005.06.006.

    Article  CAS  Google Scholar 

  99. Sato S, Akiyama M, Takahashi R, et al. Vapor-phase reaction of polyols over copper catalysts. Appl Catal A Gen. 2008;347:186–91. https://doi.org/10.1016/j.apcata.2008.06.013.

    Article  CAS  Google Scholar 

  100. Vasiliadou ES, Lemonidou AA. Kinetic study of liquid-phase glycerol hydrogenolysis over Cu/SiO2 catalyst. Chem Eng J. 2013;231:103–12. https://doi.org/10.1016/j.cej.2013.06.096.

    Article  CAS  Google Scholar 

  101. Rajkhowa T, Marin GB, Thybaut JW. A comprehensive kinetic model for Cu catalyzed liquid phase glycerol hydrogenolysis. Appl Catal B Environ. 2017;205:469–80. https://doi.org/10.1016/j.apcatb.2016.12.042.

    Article  CAS  Google Scholar 

  102. Chidambaram M, Bell AT. A two-step approach for the catalytic conversion of glucose to 2,5-dimethylfuran in ionic liquids. Green Chem. 2010;12:1253–62. https://doi.org/10.1039/C004343E.

    Article  CAS  Google Scholar 

  103. Saha B, Bohn CM, Abu-Omar MM. Zinc-assisted hydrodeoxygenation of biomass-derived 5-hydroxymethylfurfural to 2,5-dimethylfuran. ChemSusChem. 2014;7:3095–101. https://doi.org/10.1002/cssc.201402530.

    Article  CAS  PubMed  Google Scholar 

  104. Luo J, Lee JD, Yun H, et al. Base metal-Pt alloys: a general route to high selectivity and stability in the production of biofuels from HMF. Appl Catal B Environ. 2016;199:439–46. https://doi.org/10.1016/j.apcatb.2016.06.051.

    Article  CAS  Google Scholar 

  105. Goyal R, Sarkar B, Bag A, et al. Studies of synergy between metal–support interfaces and selective hydrogenation of HMF to DMF in water. J Catal. 2016;340:248–60. https://doi.org/10.1016/j.jcat.2016.05.012.

    Article  CAS  Google Scholar 

  106. Chen B, Li F, Huang Z, Yuan G. Carbon-coated Cu-Co bimetallic nanoparticles as selective and recyclable catalysts for production of biofuel 2,5-dimethylfuran. Appl Catal B Environ. 2017;200:192–9. https://doi.org/10.1016/j.apcatb.2016.07.004.

    Article  CAS  Google Scholar 

  107. Thananatthanachon T, Rauchfuss TB. Efficient production of the liquid fuel 2,5-dimethylfuran from fructose using formic acid as a reagent. Angew Chem Int Ed Engl. 2010;49:6616–8. https://doi.org/10.1002/anie.201002267.

    Article  CAS  PubMed  Google Scholar 

  108. da Silva JL, Aznar M. Thermophysical properties of 2,5-dimethylfuran and liquid–liquid equilibria of ternary systems water+2,5-dimethylfuran+alcohols (1-butanol or 2-butanol or 1-hexanol). Fuel. 2014;136:316–25. https://doi.org/10.1016/j.fuel.2014.07.039.

    Article  CAS  Google Scholar 

  109. Gandarias I, Arias PL, Fernández SG, et al. Hydrogenolysis through catalytic transfer hydrogenation: glycerol conversion to 1,2-propanediol. Catal Today. 2012;195:22–31. https://doi.org/10.1016/j.cattod.2012.03.067.

    Article  CAS  Google Scholar 

  110. Tseng Y-T, Ward JD, Lee H-Y. Design and control of a continuous multi-product process with product distribution switching: sustainable manufacture of furfuryl alcohol and 2-methylfuran. Chem Eng Process Process Intensif. 2016;105:10–20. https://doi.org/10.1016/j.cep.2016.04.003.

    Article  CAS  Google Scholar 

  111. Sitthisa S, An W, Resasco DE. Selective conversion of furfural to methylfuran over silica-supported NiFe bimetallic catalysts. J Catal. 2011;284:90–101. https://doi.org/10.1016/j.jcat.2011.09.005.

    Article  CAS  Google Scholar 

  112. Miyazawa T, Koso S, Kunimori K, Tomishige K. Development of a Ru/C catalyst for glycerol hydrogenolysis in combination with an ion-exchange resin. Appl Catal A Gen. 2007;318:244–51. https://doi.org/10.1016/j.apcata.2006.11.006.

    Article  CAS  Google Scholar 

  113. Li H, Luo H, Zhuang L, et al. Liquid phase hydrogenation of furfural to furfuryl alcohol over the Fe-promoted Ni-B amorphous alloy catalysts. J Mol Catal A Chem. 2003;203:267–75. https://doi.org/10.1016/S1381-1169(03)00368-6.

    Article  CAS  Google Scholar 

  114. Liaw B-J, Chiang S-J, Chen S-W, Chen Y-Z. Preparation and catalysis of amorphous CoNiB and polymer-stabilized CoNiB catalysts for hydrogenation of unsaturated aldehydes. Appl Catal A Gen. 2008;346:179–88. https://doi.org/10.1016/j.apcata.2008.05.025.

    Article  CAS  Google Scholar 

  115. Kijeński J, Winiarek P, Paryjczak T, et al. Platinum deposited on monolayer supports in selective hydrogenation of furfural to furfuryl alcohol. Appl Catal A Gen. 2002;233:171–82. https://doi.org/10.1016/S0926-860X(02)00140-0.

    Article  Google Scholar 

  116. Sitthisa S, Resasco DE. Hydrodeoxygenation of furfural over supported metal catalysts: a comparative study of Cu, Pd and Ni. Catal Letters. 2011;141:784–91. https://doi.org/10.1007/s10562-011-0581-7.

    Article  CAS  Google Scholar 

  117. Srivastava S, Jadeja GC, Parikh J. A versatile bi-metallic copper-cobalt catalyst for liquid phase hydrogenation of furfural to 2-methylfuran. RSC Adv. 2016;6:1649–58. https://doi.org/10.1039/C5RA15048E.

    Article  CAS  Google Scholar 

  118. Mamman AS, Lee J-M, Kim Y-C, et al. Furfural: hemicellulose/xylosederived biochemical. Biofuels Bioprod Biorefin. 2008;2:438–54. https://doi.org/10.1002/bbb.95.

    Article  CAS  Google Scholar 

  119. Yang J, Zheng H-Y, Zhu Y-L, et al. Effects of calcination temperature on performance of Cu–Zn–Al catalyst for synthesizing γ-butyrolactone and 2-methylfuran through the coupling of dehydrogenation and hydrogenation. Catal Commun. 2004. https://doi.org/10.1016/j.catcom.2004.06.005.

  120. Zheng H-Y, Zhu Y-L, Teng B-T, et al. Towards understanding the reaction pathway in vapour phase hydrogenation of furfural to 2-methylfuran. J Mol Catal A Chem. 2006;246:18–23. https://doi.org/10.1016/j.molcata.2005.10.003.

    Article  CAS  Google Scholar 

  121. Dong F, Zhu Y, Zheng H, et al. Cr-free Cu-catalysts for the selective hydrogenation of biomass-derived furfural to 2-methylfuran: the synergistic effect of metal and acid sites. J Mol Catal A Chem. 2015;398:140–8. https://doi.org/10.1016/j.molcata.2014.12.001.

    Article  CAS  Google Scholar 

  122. Li D, Zhen H, Xingcai L, et al. Physico-chemical properties of ethanol–diesel blend fuel and its effect on performance and emissions of diesel engines. Renew Energy. 2005;30:967–76. https://doi.org/10.1016/j.renene.2004.07.010.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by funds from University of the Basque Country (UPV/EHU), Spanish Ministry of Economy and Innovation (Projects: CTQ2015-64226-C3-2-R), and Basque Country Government (Project: IT993-16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Requies .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Requies, J., Agirre, I., Iriondo, A. (2017). Production of Furanic Biofuels with Zeolite and Metal Oxide Bifunctional Catalysts for Energy-and Product-Driven Biorefineries. In: Fang, Z., Smith Jr., R., Li, H. (eds) Production of Biofuels and Chemicals with Bifunctional Catalysts. Biofuels and Biorefineries, vol 8. Springer, Singapore. https://doi.org/10.1007/978-981-10-5137-1_8

Download citation

Publish with us

Policies and ethics