Pathogenesis of Refractory Status Epilepticus

  • Zhifang Dong
  • Zhong ChenEmail author


The most significant characteristic of seizures is self-limitation, which is associated with the postictal refractory period that follows a seizure. The endogenous anticonvulsant mechanism is one of the most important reasons that seizures self-terminate. However, the most significant characteristic of refractory status epilepticus (RSE) is that it is more drug resistant to first-line anti-status epilepticus drugs than are other forms of status epilepticus (SE). In general, RSE represents a severe form of SE. Because it has high mortality and is associated with increased neuronal damage, RSE should be terminated as soon as possible. In this chapter, we discuss a potential mechanism by which SE may transform into RSE, beginning with seizure termination.


  1. 1.
    Dragunow M. Endogenous anticonvulsant substances. Neurosci Biobehav Rev. 1986;10(3):229–44.PubMedCrossRefGoogle Scholar
  2. 2.
    Lado FA, Moshe SL. How do seizures stop? Epilepsia. 2008;49(10):1651–64.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Jenssen S, Gracely EJ, Sperling MR. How long do most seizures last? A systematic comparison of seizures recorded in the epilepsy monitoring unit. Epilepsia. 2006;47(9):1499–503.PubMedCrossRefGoogle Scholar
  4. 4.
    Theodore WH, et al. The secondarily generalized tonic-clonic seizure: a videotape analysis. Neurology. 1994;44(8):1403–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Pan S, et al. Factors influencing the duration of generalized tonic-clonic seizure. Seizure. 2016;34:44–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Nutt DJ, Cowen PJ, Green AR. Studies on the post-ictal rise in seizure threshold. Eur J Pharmacol. 1981;71(2–3):287–95.PubMedCrossRefGoogle Scholar
  7. 7.
    Loscher W, Frey HH. Postictal refractoriness associated with reduction of glutamic acid decarboxylase in discrete brain regions in epilepsy-prone gerbils. Biochem Pharmacol. 1987;36(16):2695–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Reisner AD. The electroconvulsive therapy controversy: evidence and ethics. Neuropsychol Rev. 2003;13(4):199–219.PubMedCrossRefGoogle Scholar
  9. 9.
    Mace JA, Burnham WM. The effect of repeated seizures on anticonvulsant drug response in the kindling model. Electroencephalogr Clin Neurophysiol. 1987;67(2):171–5.PubMedCrossRefGoogle Scholar
  10. 10.
    Loscher W, Honack D. The effect of interstimulation interval on the assessment of anticonvulsant drug potency in fully kindled rats. Epilepsy Res. 1990;7(3):182–96.PubMedCrossRefGoogle Scholar
  11. 11.
    Shinnar S, et al. How long do new-onset seizures in children last? Ann Neurol. 2001;49(5):659–64.PubMedCrossRefGoogle Scholar
  12. 12.
    Locock C. Discussion of paper by EH Sieveking: analysis of 52 cases of epilepsy observed by the author. Lancet. 1857;1:527.Google Scholar
  13. 13.
    Alam MN, Ahmad A, Al-Abbasi FA. Female ovarian steroids in epilepsy: a cause or remedy. Pharmacol Rep. 2013;65(4):802–12.PubMedCrossRefGoogle Scholar
  14. 14.
    Harden CL, et al. Seizure frequency is associated with age at menopause in women with epilepsy. Neurology. 2003;61(4):451–5.PubMedCrossRefGoogle Scholar
  15. 15.
    Harden CL, et al. The effect of menopause and perimenopause on the course of epilepsy. Epilepsia. 1999;40(10):1402–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Kaminski RM, et al. Anticonvulsant activity of androsterone and etiocholanolone. Epilepsia. 2005;46(6):819–27.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Kemmotsu N, et al. MRI analysis in temporal lobe epilepsy: cortical thinning and white matter disruptions are related to side of seizure onset. Epilepsia. 2011;52(12):2257–66.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Hesdorffer DC, et al. Risk factors for febrile status epilepticus: a case-control study. J Pediatr. 2013;163(4):1147–51.e1.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Bergren SK, et al. Genetic modifiers affecting severity of epilepsy caused by mutation of sodium channel Scn2a. Mamm Genome. 2005;16(9):683–90.PubMedCrossRefGoogle Scholar
  20. 20.
    Frankel WN, et al. Unraveling genetic modifiers in the gria4 mouse model of absence epilepsy. PLoS Genet. 2014;10(7):e1004454.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Chesler M, Kaila K. Modulation of pH by neuronal activity. Trends Neurosci. 1992;15(10):396–402.PubMedCrossRefGoogle Scholar
  22. 22.
    Velisek L, et al. Lowering of extracellular pH suppresses low-Mg(2+)-induces seizures in combined entorhinal cortex-hippocampal slices. Exp Brain Res. 1994;101(1):44–52.PubMedCrossRefGoogle Scholar
  23. 23.
    Caspers H, Speckmann EJ. Cerebral pO2, pCO2 and pH: changes during convulsive activity and their significance for spontaneous arrest of seizures. Epilepsia. 1972;13(5):699–725.PubMedCrossRefGoogle Scholar
  24. 24.
    Cao Q, et al. Elevated expression of acid-sensing ion channel 3 inhibits epilepsy via activation of interneurons. Mol Neurobiol. 2016;53(1):485–98.PubMedCrossRefGoogle Scholar
  25. 25.
    Velisek L. Extracellular acidosis and high levels of carbon dioxide suppress synaptic transmission and prevent the induction of long-term potentiation in the CA1 region of rat hippocampal slices. Hippocampus. 1998;8(1):24–32.PubMedCrossRefGoogle Scholar
  26. 26.
    Thiry A, et al. Carbonic anhydrase inhibitors as anticonvulsant agents. Curr Top Med Chem. 2007;7(9):855–64.PubMedCrossRefGoogle Scholar
  27. 27.
    Tong CK, Chen K, Chesler M. Kinetics of activity-evoked pH transients and extracellular pH buffering in rat hippocampal slices. J Neurophysiol. 2006;95(6):3686–97.PubMedCrossRefGoogle Scholar
  28. 28.
    Xiong ZQ, Saggau P, Stringer JL. Activity-dependent intracellular acidification correlates with the duration of seizure activity. J Neurosci. 2000;20(4):1290–6.PubMedGoogle Scholar
  29. 29.
    Schuchmann S, et al. Experimental febrile seizures are precipitated by a hyperthermia-induced respiratory alkalosis. Nat Med. 2006;12(7):817–23.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Ziemann AE, et al. Seizure termination by acidosis depends on ASIC1a. Nat Neurosci. 2008;11(7):816–22.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Heinemann U, Lux HD, Gutnick MJ. Extracellular free calcium and potassium during paroxsmal activity in the cerebral cortex of the cat. Exp Brain Res. 1977;27(3–4):237–43.PubMedGoogle Scholar
  32. 32.
    Hongo Y, et al. Heterogeneous effects of antiepileptic drugs in an in vitro epilepsy model—a functional multineuron calcium imaging study. Eur J Neurosci. 2015;42(2):1818–29.PubMedCrossRefGoogle Scholar
  33. 33.
    Boison D. Adenosinergic signaling in epilepsy. Neuropharmacology. 2015;104:131–9.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Lewin E, Bleck V. Electroshock seizures in mice: effect on brain adenosine and its metabolites. Epilepsia. 1981;22(5):577–81.PubMedCrossRefGoogle Scholar
  35. 35.
    Meurs A, et al. Clinical potential of neuropeptide Y receptor ligands in the treatment of epilepsy. Curr Top Med Chem. 2007;7(17):1660–74.PubMedCrossRefGoogle Scholar
  36. 36.
    Van Gompel JJ, et al. Increased cortical extracellular adenosine correlates with seizure termination. Epilepsia. 2014;55(2):233–44.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Ault B, Wang CM. Adenosine inhibits epileptiform activity arising in hippocampal area CA3. Br J Pharmacol. 1986;87(4):695–703.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    During MJ, Spencer DD. Adenosine: a potential mediator of seizure arrest and postictal refractoriness. Ann Neurol. 1992;32(5):618–24.PubMedCrossRefGoogle Scholar
  39. 39.
    Young D, Dragunow M. Status epilepticus may be caused by loss of adenosine anticonvulsant mechanisms. Neuroscience. 1994;58(2):245–61.PubMedCrossRefGoogle Scholar
  40. 40.
    Boison D. Adenosine and epilepsy: from therapeutic rationale to new therapeutic strategies. Neuroscientist. 2005;11(1):25–36.PubMedCrossRefGoogle Scholar
  41. 41.
    Vezzani A, Sperk G. Overexpression of NPY and Y2 receptors in epileptic brain tissue: an endogenous neuroprotective mechanism in temporal lobe epilepsy? Neuropeptides. 2004;38(4):245–52.PubMedCrossRefGoogle Scholar
  42. 42.
    Marksteiner J, Sperk G, Maas D. Differential increases in brain levels of neuropeptide Y and vasoactive intestinal polypeptide after kainic acid-induced seizures in the rat. Naunyn Schmiedeberg’s Arch Pharmacol. 1989;339(1–2):173–7.Google Scholar
  43. 43.
    Hestrin S, Galarreta M. Electrical synapses define networks of neocortical GABAergic neurons. Trends Neurosci. 2005;28(6):304–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Valiunas V. Biophysical properties of connexin-45 gap junction hemichannels studied in vertebrate cells. J Gen Physiol. 2002;119(2):147–64.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    De Curtis M, Manfridi A, Biella G. Activity-dependent pH shifts and periodic recurrence of spontaneous interictal spikes in a model of focal epileptogenesis. J Neurosci. 1998;18(18):7543–51.PubMedGoogle Scholar
  46. 46.
    Gajda Z, et al. Quinine, a blocker of neuronal cx36 channels, suppresses seizure activity in rat neocortex in vivo. Epilepsia. 2005;46(10):1581–91.PubMedCrossRefGoogle Scholar
  47. 47.
    Jahromi SS, et al. Anticonvulsant actions of gap junctional blockers in an in vitro seizure model. J Neurophysiol. 2002;88(4):1893–902.PubMedGoogle Scholar
  48. 48.
    Staley KJ, et al. Presynaptic modulation of CA3 network activity. Nat Neurosci. 1998;1(3):201–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Jones J, et al. Desynchronization of glutamate release prolongs synchronous CA3 network activity. J Neurophysiol. 2007;97(5):3812–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Lopantsev V, Both M, Draguhn A. Rapid plasticity at inhibitory and excitatory synapses in the hippocampus induced by ictal epileptiform discharges. Eur J Neurosci. 2009;29(6):1153–64.PubMedCrossRefGoogle Scholar
  51. 51.
    Dorn T, Witte OW. Refractory periods following interictal spikes in acute experimentally induced epileptic foci. Electroencephalogr Clin Neurophysiol. 1995;94(1):80–5.PubMedCrossRefGoogle Scholar
  52. 52.
    Chen L, Chan YS, Yung WH. GABA-B receptor activation in the rat globus pallidus potently suppresses pentylenetetrazol-induced tonic seizures. J Biomed Sci. 2004;11(4):457–64.PubMedCrossRefGoogle Scholar
  53. 53.
    Zivanovic D, et al. Action of GABA-B antagonist on cortical epileptic afterdischarges in rats is similar to that of GABA-A antagonist. Physiol Res. 2003;52(5):651–5.PubMedGoogle Scholar
  54. 54.
    Vergnes M, et al. Opposite effects of GABAB receptor antagonists on absences and convulsive seizures. Eur J Pharmacol. 1997;332(3):245–55.PubMedCrossRefGoogle Scholar
  55. 55.
    Shehab SA, et al. Experimental manipulations of the subthalamic nucleus fail to suppress tonic seizures in the electroshock model of epilepsy. Exp Brain Res. 2006;173(2):274–81.PubMedCrossRefGoogle Scholar
  56. 56.
    Iadarola MJ, Gale K. Substantia nigra: site of anticonvulsant activity mediated by gamma-aminobutyric acid. Science. 1982;218(4578):1237–40.PubMedCrossRefGoogle Scholar
  57. 57.
    Chen JW, Naylor DE, Wasterlain CG. Advances in the pathophysiology of status epilepticus. Acta Neurol Scand Suppl. 2007;186:7–15.PubMedCrossRefGoogle Scholar
  58. 58.
    Brooks-Kayal AR. Rearranging receptors. Epilepsia. 2005;46(Suppl 7):29–38.PubMedCrossRefGoogle Scholar
  59. 59.
    Chudomel O, et al. Age- and sex-related characteristics of tonic GABA currents in the rat substantia nigra pars reticulata. Neurochem Res. 2015;40(4):747–57.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Stell BM, et al. Neuroactive steroids reduce neuronal excitability by selectively enhancing tonic inhibition mediated by delta subunit-containing GABAA receptors. Proc Natl Acad Sci U S A. 2003;100(24):14439–44.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Khazipov R, Holmes GL. Synchronization of kainate-induced epileptic activity via GABAergic inhibition in the superfused rat hippocampus in vivo. J Neurosci. 2003;23(12):5337–41.PubMedGoogle Scholar
  62. 62.
    Cohen I, et al. On the origin of interictal activity in human temporal lobe epilepsy in vitro. Science. 2002;298(5597):1418–21.PubMedCrossRefGoogle Scholar
  63. 63.
    Kohling R, et al. Spontaneous sharp waves in human neocortical slices excised from epileptic patients. Brain. 1998;121(Pt 6):1073–87.PubMedCrossRefGoogle Scholar
  64. 64.
    Tuff LP, Racine RJ, Adamec R. The effects of kindling on GABA-mediated inhibition in the dentate gyrus of the rat. I. Paired pulse depression. Brain Res. 1983;277(1):79–90.PubMedCrossRefGoogle Scholar
  65. 65.
    Lawrence C, et al. Endogenous neurosteroid synthesis modulates seizure frequency. Ann Neurol. 2010;67(5):689–93.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Kirchner A, Veliskova J, Velisek L. Differential effects of low glucose concentrations on seizures and epileptiform activity in vivo and in vitro. Eur J Neurosci. 2006;23(6):1512–22.PubMedCrossRefGoogle Scholar
  67. 67.
    Doman G, Pelligra R. A unifying concept of seizure onset and termination. Med Hypotheses. 2004;62(5):740–5.PubMedCrossRefGoogle Scholar
  68. 68.
    Namba H, et al. Local cerebral glucose utilization in the postictal phase of amygdaloid kindled rats. Brain Res. 1989;486(2):221–7.PubMedCrossRefGoogle Scholar
  69. 69.
    Patrick AW, Campbell IW. Fatal hypoglycaemia in insulin-treated diabetes mellitus: clinical features and neuropathological changes. Diabet Med. 1990;7(4):349–54.PubMedCrossRefGoogle Scholar
  70. 70.
    Benarroch EE. Neuron-astrocyte interactions: partnership for normal function and disease in the central nervous system. Mayo Clin Proc. 2005;80(10):1326–38.PubMedCrossRefGoogle Scholar
  71. 71.
    Tian GF, et al. An astrocytic basis of epilepsy. Nat Med. 2005;11(9):973–81.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Groves DA, Brown VJ. Vagal nerve stimulation: a review of its applications and potential mechanisms that mediate its clinical effects. Neurosci Biobehav Rev. 2005;29(3):493–500.PubMedCrossRefGoogle Scholar
  73. 73.
    Albala BJ, et al. Unilateral peri-substantia nigra catecholaminergic lesion and amygdala kindling. Brain Res. 1986;370(2):388–92.PubMedCrossRefGoogle Scholar
  74. 74.
    Carpenter LL, et al. Effect of vagus nerve stimulation on cerebrospinal fluid monoamine metabolites, norepinephrine, and gamma-aminobutyric acid concentrations in depressed patients. Biol Psychiatry. 2004;56(6):418–26.PubMedCrossRefGoogle Scholar
  75. 75.
    Marrosu F, et al. Increase in 20-50 Hz (gamma frequencies) power spectrum and synchronization after chronic vagal nerve stimulation. Clin Neurophysiol. 2005;116(9):2026–36.PubMedCrossRefGoogle Scholar
  76. 76.
    Timofeev I, Grenier F, Steriade M. Contribution of intrinsic neuronal factors in the generation of cortically driven electrographic seizures. J Neurophysiol. 2004;92(2):1133–43.PubMedCrossRefGoogle Scholar
  77. 77.
    Okada R, Negishi N, Nagaya H. The role of the nigrotegmental GABAergic pathway in the propagation of pentylenetetrazol-induced seizures. Brain Res. 1989;480(1–2):383–7.PubMedCrossRefGoogle Scholar
  78. 78.
    Veliskova J, et al. The expression of GABA (A) receptor subunits in the substantia nigra is developmentally regulated and region-specific. Ital J Neurol Sci. 1998;19(4):205–10.PubMedCrossRefGoogle Scholar
  79. 79.
    Veliskova J, Moshe SL. Sexual dimorphism and developmental regulation of substantia nigra function. Ann Neurol. 2001;50(5):596–601.PubMedCrossRefGoogle Scholar
  80. 80.
    Lado FA, Velisek L, Moshe SL. The effect of electrical stimulation of the subthalamic nucleus on seizures is frequency dependent. Epilepsia. 2003;44(2):157–64.PubMedCrossRefGoogle Scholar
  81. 81.
    Chabardes S, et al. Deep brain stimulation in epilepsy with particular reference to the subthalamic nucleus. Epileptic Disord. 2002;4(Suppl 3):S83–93.PubMedGoogle Scholar
  82. 82.
    Evangelista E, et al. Does the thalamo-cortical synchrony play a role in seizure termination? Front Neurol. 2015;6:192.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Yamagata Y, Nairn AC. Contrasting features of ERK1/2 activity and synapsin I phosphorylation at the ERK1/2-dependent site in the rat brain in status epilepticus induced by kainic acid in vivo. Brain Res. 2015;1625:314–23.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Lee SK, Kim JE, Kim YJ, et al. Hyperforin attenuates microglia activation and inhibits p 65-Ser 276 NFkappaB phosphorylation in the rat piriform cortex following status epilepticus. Neurosci Res. 2014;85:39–50.PubMedCrossRefGoogle Scholar
  85. 85.
    Oliveira MS, Skinner F, Arshadmansab MF, et al. Altered expression and function of small-conductance (SK) Ca(2+)-activated K+ channels in pilocarpine-treated epileptic rats. Brain Res. 2010;1348:187–99.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Wu H, Wang C, Liu B, et al. Altered expression pattern of acid-sensing ion channel isoforms in piriform cortex after seizures. Mol Neurobiol. 2016;53(3):1782–93.PubMedCrossRefGoogle Scholar
  87. 87.
    Ellerkmann RK, Remy S, Chen J, et al. Molecular and functional changes in voltage-dependent Na(+) channels following pilocarpine-induced status epilepticus in rat dentate granule cells. Neuroscience. 2003;119(2):323–33.PubMedCrossRefGoogle Scholar
  88. 88.
    Santana-Gomez CE, Alcantara-Gonzalez D, Luna-Munguia H, et al. Transcranial focal electrical stimulation reduces the convulsive expression and amino acid release in the hippocampus during pilocarpine-induced status epilepticus in rats. Epilepsy Behav. 2015;49:33–9.PubMedCrossRefGoogle Scholar
  89. 89.
    Goodkin HP, Yeh JL, Kapur J. Status epilepticus increases the intracellular accumulation of GABA-A receptors. J Neurosci. 2005;25(23):5511–20.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Goodkin HP, Joshi S, Mtchedlishvili Z, et al. Subunit-specific trafficking of GABA (A) receptors during status epilepticus. J Neurosci. 2008;28(10):2527–38.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Naylor DE, Liu H, Wasterlain CG. Trafficking of GABA (A) receptors, loss of inhibition, and a mechanism for pharmacoresistance in status epilepticus. J Neurosci. 2005;25(34):7724–33.PubMedCrossRefGoogle Scholar
  92. 92.
    Naylor DE, Wasterlain CG. GABA synapses and the rapid loss of inhibition to dentate gyrus granule cells after brief perforant-path stimulation. Epilepsia. 2005;46(Suppl 5):142–7.PubMedCrossRefGoogle Scholar
  93. 93.
    Kapur J, Stringer JL, Lothman EW. Evidence that repetitive seizures in the hippocampus cause a lasting reduction of GABAergic inhibition. J Neurophysiol. 1989;61(2):417–26.PubMedGoogle Scholar
  94. 94.
    Delorenzo RJ, Garnett LK, Towne AR, et al. Comparison of status epilepticus with prolonged seizure episodes lasting from 10 to 29 minutes. Epilepsia. 1999;40(2):164–9.PubMedCrossRefGoogle Scholar
  95. 95.
    Ure A, Altrup U. Block of spontaneous termination of paroxysmal depolarizations by forskolin (buccal ganglia, Helix pomatia). Neurosci Lett. 2006;392(1–2):10–5.PubMedCrossRefGoogle Scholar
  96. 96.
    Naylor DE, Liu H, Niquet J, Wasterlain CG. Rapid surface accumulation of NMDA receptors increases glutamatergic excitation during status epilepticus. Neurobiol Dis. 2013;54:225–38.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Liu H, Mazarati AM, Katsumori H, et al. Substance P is expressed in hippocampal principal neurons during status epilepticus and plays a critical role in the maintenance of status epilepticus. Proc Natl Acad Sci U S A. 1999;96(9):5286–91.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Baraban SC, Hollopeter G, Erickson JC, et al. Knock-out mice reveal a critical antiepileptic role for neuropeptide Y. J Neurosci. 1997;17(23):8927–36.PubMedGoogle Scholar
  99. 99.
    O’Loughlin EK, Pakan JM, Mcdermott KW, et al. Expression of neuropeptide Y1 receptors in the amygdala and hippocampus and anxiety-like behavior associated with Ammon’s horn sclerosis following intrahippocampal kainate injection in C57BL/6J mice. Epilepsy Behav. 2014;37:175–83.PubMedCrossRefGoogle Scholar
  100. 100.
    Elliott RC, Miles MF, Lowenstein DH. Overlapping microarray profiles of dentate gyrus gene expression during development- and epilepsy-associated neurogenesis and axon outgrowth. J Neurosci. 2003;23(6):2218–27.PubMedGoogle Scholar
  101. 101.
    Pulido Fontes L, Quesada Jimenez P, Mendioroz IM. Epigenetics and epilepsy. Neurologia. 2015;30(2):111–8.PubMedCrossRefGoogle Scholar
  102. 102.
    Miller-Delaney SF, Das S, Sano T, et al. Differential DNA methylation patterns define status epilepticus and epileptic tolerance. J Neurosci. 2012;32(5):1577–88.PubMedCrossRefGoogle Scholar
  103. 103.
    Reschke CR, Henshall DC. micro RNA and epilepsy. Adv Exp Med Biol. 2015;888:41–70.PubMedCrossRefGoogle Scholar
  104. 104.
    Fountain NB, Lothman EW. Pathophysiology of status epilepticus. J Clin Neurophysiol. 1995;12(4):326–42.PubMedCrossRefGoogle Scholar
  105. 105.
    Kim JE, Kim DS, Jin Ryu H, et al. The effect of P2X7 receptor activation on nuclear factor-kappaB phosphorylation induced by status epilepticus in the rat hippocampus. Hippocampus. 2013;23(6):500–14.PubMedCrossRefGoogle Scholar
  106. 106.
    Ryu HJ, Kim JE, Yeo SI, et al. ReLA/P65-serine 536 nuclear factor-kappa B phosphorylation is related to vulnerability to status epilepticus in the rat hippocampus. Neuroscience. 2011;187:93–102.PubMedCrossRefGoogle Scholar
  107. 107.
    Lerche H, Shah M, Beck H, et al. Ion channels in genetic and acquired forms of epilepsy. J Physiol. 2013;591(4):753–64.PubMedCrossRefGoogle Scholar
  108. 108.
    Dey D, Eckle VS, Vitko I, et al. A potassium leak channel silences hyperactive neurons and ameliorates status epilepticus. Epilepsia. 2014;55(2):203–13.PubMedCrossRefGoogle Scholar
  109. 109.
    Barnwell LF, Lugo JN, Lee WL, et al. Kv4.2 knockout mice demonstrate increased susceptibility to convulsant stimulation. Epilepsia. 2009;50(7):1741–51.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Hill MW, Wong M, Amarakone A, et al. Rapid cooling aborts seizure-like activity in rodent hippocampal-entorhinal slices. Epilepsia. 2000;41(10):1241–8.PubMedCrossRefGoogle Scholar
  111. 111.
    Upreti C, Otero R, Partida C, et al. Altered neurotransmitter release, vesicle recycling and presynaptic structure in the pilocarpine model of temporal lobe epilepsy. Brain. 2012;135(Pt 3):869–85.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Szczurowska E, Mareš P. NMDA and AMPA receptors: development and status epilepticus. Physiol Res. 2013;62(Suppl 1):S21–38.PubMedGoogle Scholar
  113. 113.
    Kaminski RM, Fu Z, Venkatesan K, et al. 11-Deoxycortisol impedes GABAergic neurotransmission and induces drug-resistant status epilepticus in mice. Neuropharmacology. 2011;60(7–8):1098–108.PubMedCrossRefGoogle Scholar
  114. 114.
    Volgushev M, Kudryashov I, Chistiakova M, et al. Probability of transmitter release at neocortical synapses at different temperatures. J Neurophysiol. 2004;92(1):212–20.PubMedCrossRefGoogle Scholar
  115. 115.
    Motamedi GK, Gonzalez-Sulser A, Dzakpasu R, et al. Cellular mechanisms of desynchronizing effects of hypothermia in an in vitro epilepsy model. Neurotherapeutics. 2012;9(1):199–209.PubMedCrossRefGoogle Scholar
  116. 116.
    Wasterlain CG, Mazarati AM, Naylor D, et al. Short-term plasticity of hippocampal neuropeptides and neuronal circuitry in experimental status epilepticus. Epilepsia. 2002;43(Suppl 5):20–9.PubMedCrossRefGoogle Scholar
  117. 117.
    Vadillo FJ, Noya M. Concept, classification and pathophysiology of status epilepticus. Neurologia. 1997;12(Suppl 6):2–9.PubMedGoogle Scholar
  118. 118.
    Grosshans DR, Clayton DA, Coultrap SJ, et al. LTP leads to rapid surface expression of NMDA but not AMPA receptors in adult rat CA1. Nat Neurosci. 2002;5(1):27–33.PubMedCrossRefGoogle Scholar
  119. 119.
    Kochan LD, Churn SB, Omojokun O, et al. Status epilepticus results in an N-methyl-D-aspartate receptor-dependent inhibition of Ca2+/calmodulin-dependent kinase II activity in the rat. Neuroscience. 2000;95(3):735–43.PubMedCrossRefGoogle Scholar
  120. 120.
    Gurd JW, Rawof S, Zhen Huo J, et al. Ischemia and status epilepitcus result in enhanced phosphorylation of calcium and calmodulin-stimulated protein kinase II on threonine 253. Brain Res. 2008;1218:158–65.PubMedCrossRefGoogle Scholar
  121. 121.
    Nair PP, Kalita J, Misra UK. Status epilepticus: why, what, and how. J Postgrad Med. 2011;57(3):242–52.PubMedCrossRefGoogle Scholar
  122. 122.
    Abend NS, Loddenkemper T. Pediatric status epilepticus management. Curr Opin Pediatr. 2014;26(6):668–74.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Kapur J, Coulter DA. Experimental status epilepticus alters gamma-aminobutyric acid type A receptor function in CA1 pyramidal neurons. Ann Neurol. 1995;38(6):893–900.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Cash SS. Status epilepticus as a system disturbance: is status epilepticus due to synchronization or desynchronization? Epilepsia. 2013;54(Suppl 6):37–9.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Schindler K, Elger CE, Lehnertz K. Increasing synchronization may promote seizure termination: evidence from status epilepticus. Clin Neurophysiol. 2007;118(9):1955–68.PubMedCrossRefGoogle Scholar
  126. 126.
    Mazarati AM, Baldwin RA, Sankar R, et al. Time-dependent decrease in the effectiveness of antiepileptic drugs during the course of self-sustaining status epilepticus. Brain Res. 1998;814(1–2):179–85.PubMedCrossRefGoogle Scholar
  127. 127.
    Mazarati AM, Wasterlain CG. N-methyl-D-asparate receptor antagonists abolish the maintenance phase of self-sustaining status epilepticus in rat. Neurosci Lett. 1999;265(3):187–90.PubMedCrossRefGoogle Scholar
  128. 128.
    Hocker S, Tatum WO, Laroche S, et al. Refractory and super-refractory status epilepticus—an update. Curr Neurol Neurosci Rep. 2014;14(6):452.PubMedCrossRefGoogle Scholar
  129. 129.
    Abend NS, Bearden D, Helbig I, et al. Status epilepticus and refractory status epilepticus management. Semin Pediatr Neurol. 2014;21(4):263–74.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Reddy DS, Kuruba R. Experimental models of status epilepticus and neuronal injury for evaluation of therapeutic interventions. Int J Mol Sci. 2013;14(9):18284–318.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Goodkin HP, Sun C, Yeh JL, et al. GABA(A) receptor internalization during seizures. Epilepsia. 2007;48(Suppl 5):109–13.PubMedCrossRefGoogle Scholar
  132. 132.
    Kapur J, Macdonald RL. Rapid seizure-induced reduction of benzodiazepine and Zn2+ sensitivity of hippocampal dentate granule cell GABA-A receptors. J Neurosci. 1997;17(19):7532–40.PubMedPubMedCentralGoogle Scholar
  133. 133.
    Rajasekaran K, Joshi S, Kozhemyakin M, et al. Receptor trafficking hypothesis revisited: plasticity of AMPA receptors during established status epilepticus. Epilepsia. 2013;54(Suppl 6):14–6.PubMedCrossRefGoogle Scholar
  134. 134.
    Prasad A, Worrall BB, Bertram EH, et al. Propofol and midazolam in the treatment of refractory status epilepticus. Epilepsia. 2001;42(3):380–6.PubMedCrossRefGoogle Scholar
  135. 135.
    Kofke WA, Young RS, Davis P, et al. Isoflurane for refractory status epilepticus: a clinical series. Anesthesiology. 1989;71(5):653–9.PubMedCrossRefGoogle Scholar
  136. 136.
    Mazarati AM, Wasterlain CG, Sankar R, et al. Self-sustaining status epilepticus after brief electrical stimulation of the perforant path. Brain Res. 1998;801(1–2):251–3.PubMedCrossRefGoogle Scholar
  137. 137.
    Sloviter RS. Decreased hippocampal inhibition and a selective loss of interneurons in experimental epilepsy. Science. 1987;235(4784):73–6.PubMedCrossRefGoogle Scholar
  138. 138.
    Meldrum BS, Horton RW. Physiology of status epilepticus in primates. Arch Neurol. 1973;28(1):1–9.PubMedCrossRefGoogle Scholar
  139. 139.
    Pitkanen A, Lukasiuk K. Mechanisms of epileptogenesis and potential treatment targets. Lancet Neurol. 2011;10(2):173–86.PubMedCrossRefGoogle Scholar
  140. 140.
    Brown GC. Nitric oxide and neuronal death. Nitric Oxide. 2010;23(3):153–65.PubMedCrossRefGoogle Scholar
  141. 141.
    Pollard H, Charriaut-Marlangue C, Cantagrel S, et al. Kainate-induced apoptotic cell death in hippocampal neurons. Neuroscience. 1994;63(1):7–18.PubMedCrossRefGoogle Scholar
  142. 142.
    Tian R, She Y, Jia Y, et al. Effect of pingxian granules on protein expression of apoptosis regulatory genes in hippocampus of pentylenetetrazol-induced epileptic model rats. China J Chin Mater Med. 2012;37(9):1307–10.Google Scholar
  143. 143.
    Corsellis JA, Bruton CJ. Neuropathology of status epilepticus in humans. Adv Neurol. 1983;34:129–39.PubMedGoogle Scholar
  144. 144.
    Degiorgio CM, Heck CN, Rabinowicz AL, et al. Serum neuron-specific enolase in the major subtypes of status epilepticus. Neurology. 1999;52(4):746–9.PubMedCrossRefGoogle Scholar
  145. 145.
    Cock HR, Tong X, Hargreaves IP, et al. Mitochondrial dysfunction associated with neuronal death following status epilepticus in rat. Epilepsy Res. 2002;48(3):157–68.PubMedCrossRefGoogle Scholar
  146. 146.
    Lazeyras F, Blanke O, Zimine I, et al. MRI, (1)H-MRS, and functional MRI during and after prolonged nonconvulsive seizure activity. Neurology. 2000;55(11):1677–82.PubMedCrossRefGoogle Scholar
  147. 147.
    Morimoto T, Fukuda M, Suzuki Y, et al. Sequential changes of brain CT and MRI after febrile status epilepticus in a 6-year-old girl. Brain Dev. 2002;24(3):190–3.PubMedCrossRefGoogle Scholar
  148. 148.
    Nixon J, Bateman D, Moss T. An MRI and neuropathological study of a case of fatal status epilepticus. Seizure. 2001;10(8):588–91.PubMedCrossRefGoogle Scholar
  149. 149.
    Cendes F, Andermann F, Carpenter S, et al. Temporal lobe epilepsy caused by domoic acid intoxication: evidence for glutamate receptor-mediated excitotoxicity in humans. Ann Neurol. 1995;37(1):123–6.PubMedCrossRefGoogle Scholar
  150. 150.
    Wasterlain CG. Inhibition of cerebral protein synthesis by epileptic seizures without motor manifestations. Neurology. 1974;24(2):175–80.PubMedCrossRefGoogle Scholar
  151. 151.
    Mazarati A, Liu H, Wasterlain C. Opioid peptide pharmacology and immunocytochemistry in an animal model of self-sustaining status epilepticus. Neuroscience. 1999;89(1):167–73.PubMedCrossRefGoogle Scholar
  152. 152.
    Sperk G, Marksteiner J, Gruber B, et al. Functional changes in neuropeptide Y- and somatostatin-containing neurons induced by limbic seizures in the rat. Neuroscience. 1992;50(4):831–46.PubMedCrossRefGoogle Scholar
  153. 153.
    Mazarati AM, Liu H, Soomets U, et al. Galanin modulation of seizures and seizure modulation of hippocampal galanin in animal models of status epilepticus. J Neurosci. 1998;18(23):10070–7.PubMedGoogle Scholar
  154. 154.
    Mazarati A, Wasterlain CG. Anticonvulsant effects of four neuropeptides in the rat hippocampus during self-sustaining status epilepticus. Neurosci Lett. 2002;331(2):123–7.PubMedCrossRefGoogle Scholar
  155. 155.
    Mazarati A, Lu X, Shinmei S, et al. Patterns of seizures, hippocampal injury and neurogenesis in three models of status epilepticus in galanin receptor type 1 (GalR1) knockout mice. Neuroscience. 2004;128(2):431–41.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Erickson JC, Clegg KE, Palmiter RD. Sensitivity to leptin and susceptibility to seizures of mice lacking neuropeptide Y. Nature. 1996;381(6581):415–21.PubMedCrossRefGoogle Scholar
  157. 157.
    Silva AP, Lourenco J, Xapelli S, et al. Protein kinase C activity blocks neuropeptide Y-mediated inhibition of glutamate release and contributes to excitability of the hippocampus in status epilepticus. FASEB J. 2007;21(3):671–81.PubMedCrossRefGoogle Scholar
  158. 158.
    Loscher W. Mechanisms of drug resistance in status epilepticus. Epilepsia. 2007;48(Suppl 8):74–7.PubMedCrossRefGoogle Scholar
  159. 159.
    Liu H, Sankar R, Shin DH, et al. Patterns of status epilepticus-induced substance P expression during development. Neuroscience. 2000;101(2):297–304.PubMedCrossRefGoogle Scholar
  160. 160.
    Marchi N, Granata T, Freri E, et al. Efficacy of anti-inflammatory therapy in a model of acute seizures and in a population of pediatric drug resistant epileptics. PLoS One. 2011;6(3):e18200.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Friedman A, Dingledine R. Molecular cascades that mediate the influence of inflammation on epilepsy. Epilepsia. 2011;52(Suppl 3):33–9.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Juhasz C, Buth A, Chugani DC, et al. Successful surgical treatment of an inflammatory lesion associated with new-onset refractory status epilepticus. Neurosurg Focus. 2013;34(6):E5.PubMedCrossRefGoogle Scholar
  163. 163.
    Barnes G, Puranam RS, Luo Y, et al. Temporal specific patterns of semaphorin gene expression in rat brain after kainic acid-induced status epilepticus. Hippocampus. 2003;13(1):1–20.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory DisordersChildren’s Hospital of Chongqing Medical UniversityChongqingChina
  2. 2.Ministry of Education Key Laboratory of Child Development and DisordersChildren’s Hospital of Chongqing Medical UniversityChongqingChina
  3. 3.Department of Neurology and Epilepsy Center, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina

Personalised recommendations