General Data Format Security Extensions for Biomedical Signals

  • Saulius Daukantas
  • Vaidotas Marozas
  • George Drosatos
  • Eleni Kaldoudi
  • Arunas Lukosevicius
Conference paper
Part of the IFMBE Proceedings book series (IFMBE, volume 65)

Abstract

Biosignals recorded using personal health devices and stored in General Data Format (GDF) are vulnerable when the data is transferred, processed and stored to the external servers. The aforementioned vulnerabilities influence data security and user’s privacy. In this paper, we propose modifications of GDF format that enables the encryption both - personal data and biosignals. These modifications do not corrupt the intrinsic structure of the GDF format and allow to encrypt independently the header with personal data and the section of biosignals. The proposed modifications were implemented, embedded and tested in a personal health device – multiparametric scale. The header data and biosignals are encrypted directly in the scale, and saved in the micro-SD card using our modified GDF format. Finally, we present the required resources needed for encryption process.

Keywords

Biomedical signals General Data Format Data security and privacy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. Ching K.W. & Singh M.M. Wearable Technology Devices Security and Privacy Vulnerability Analysis. Int. Journ. Of Network Security & Its Applications, 8(3), 2016.Google Scholar
  2. 2. Ming Li at. al. Data Security and Privacy in Wireless Body Area Networks. IEEE Wireless Communications, 17(1), 2010.Google Scholar
  3. 3. Drosatos G. et al. Towards Privacy by design in Personal e-Health Systems. Proc. of 9th Int. Joint Conf. on Biomedical Engineering Systems and Technologies, vol. 5, Rome, 2016.Google Scholar
  4. 4. Schlögl A. An overview on data formats for biomedical signals. Springer, Berlin, Heidelberg, pp. 1557–1560, 2009.Google Scholar
  5. 5. The BioSig Project. http://biosig.sourceforge.net
  6. 6. OpenXDF Consortium. Open eXchange Data Format Specification. 2009.Google Scholar
  7. 7. Schneier B. et al. Twofish: A 128-Bit Block Cipher. 1998.Google Scholar
  8. 8. Dworkin M. Recommendation for Block Cipher Modes of Operation Methods and Techniques. Natl. Inst. Stand. Technol. Spec. Publ. 800-38A 2001 ED, no. December, p. 66, 2001.Google Scholar
  9. 9. Yao L. et al. A Biometric Key Establishment Protocol for Body Area Networks. International Journal of Distributed Sensor Networks, 7(1), 2011.Google Scholar
  10. 10. Revett K. & de Magalhães S.T. Cognitive Biometrics: Challenges for the Future (pp. 79–86). Springer, Berlin, Heidelberg, 2010.Google Scholar
  11. 11. Paliakaite B. et al. Estimation of pulse arrival time using impedance plethysmogram from body composition scales. In IEEE Sensors Applications Symposium (SAS), pp. 1–4, 2015.Google Scholar
  12. 12. Paliakaitė B., Daukantas S. & Marozas V. Assessment of pulse arrival time for arterial stiffness monitoring on body composition scales. Comput. Biol. Med., Apr. 2016.Google Scholar
  13. 13. SSL Library mbed TLS / PolarSSLhttps://tls.mbed.org
  14. 14. Dunigan T. Random bits from dueling clocks. https://developer.mbed.org/users/manitou/code/rng/
  15. 15. Zhang C. et al. A new construction of threshold cryptosystems based on RSA. Information Sciences, 363, pp. 140–153, 2016.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Saulius Daukantas
    • 1
  • Vaidotas Marozas
    • 1
  • George Drosatos
    • 2
  • Eleni Kaldoudi
    • 2
  • Arunas Lukosevicius
    • 1
  1. 1.Kaunas University of Technology/Biomedical engineering instituteKaunasLithuania
  2. 2.School of MedicineDemocritus University of ThraceAlexandroupoliGreece

Personalised recommendations