Advertisement

Setup of a white light selective plane microscope to investigate microprobe insertion in a brain model

  • Mohamed Fadi Yassine
  • Kevin Joseph
  • Ulrich G. Hofmann
Conference paper
Part of the IFMBE Proceedings book series (IFMBE, volume 65)

Abstract

Little can be seen during the actual, dynamic implantation of microprobes into the bulk of brain tissue, mainly due to the high absorption and scattering properties of the neuropil. Fluorescent selective plane microscopy has revolutionized biology by producing optical 3D stacks of whole tissue, without slicing. The following describes a simple adaptation of white-light selective plane microscopy to visually monitor the insertion of tungsten rods with different velocities into micro-bead charged agarose gels, a good model for brain mechanics. We report on a surprising, speed dependent penetration mechanism resembling bow wave accumulation of gel.

Keywords

brain implant brain model light-sheet microscopy viscoelastic gel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. Buffo A, Rolando C, Ceruti S (2010) Astrocytes in the damaged brain: molecular and cellular insights into their reactive response and healing potential. Biochem Pharmacol 79: 77–89. doi: 10.1016/j.bcp.2009.09.014.
  2. 2. Biran R, Martin DC, Tresco PA (2007) The brain tissue response to implanted silicon microelectrode arrays is increased when the device is tethered to the skull. J Biomed Mater Res A 82: 169–178. doi: 10.1002/jbm.a.31138.
  3. 3. Leach JB, Achyuta AKH, Murthy SK (2010) Bridging the Divide between Neuroprosthetic Design, Tissue Engineering and Neurobiology. Front Neuroengineering 2: 18. doi: 10.3389/neuro.16.018.2009.
  4. 4. Polikov VS, Tresco PA, Reichert WM (2005) Response of brain tissue to chronically implanted neural electrodes. J Neurosci Methods 148: 1–18. doi: 10.1016/j.jneumeth.2005.08.015.
  5. 5. Turner JN, Shain W, Szarowski DH, Andersen M, Martins S, et al. (1999) Cerebral astrocyte response to micromachined silicon implants. Exp Neurol 156: 33–49. doi: 10.1006/exnr.1998.6983.
  6. 6. Hassler C, Ehler N, Singh V, Xie Y, Martini N, et al. (2015) Fabrication and implantation of hydrogel coated, flexible polyimide electrodes. 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER). IEEE. pp. 561–564. doi: 10.1109/NER.2015.7146684.
  7. 7. Xie Y, Martini N, Hassler C, Kirch RD, Stieglitz T, et al. (2014) In vivo monitoring of glial scar proliferation on chronically implanted neural electrodes by fiber optical coherence tomography. Front Neuroengineering 7: 34. doi: 10.3389/fneng.2014.00034.
  8. 8. Rubehn B, Stieglitz T (2010) In vitro evaluation of the long-term stability of polyimide as a material for neural implants. Biomaterials 31: 3449–3458. doi: 10.1016/j.biomaterials.2010.01.053.
  9. 9. Rousche PJ, Pellinen DS, Pivin DP, Williams JC, Vetter RJ, et al. (2001) Flexible polyimide-based intracortical electrode arrays with bioactive capability. IEEE Trans Biomed Eng 48: 361–371. doi: 10.1109/10.914800.
  10. 10. Richter A, Xie Y, Schumacher A, Löffler S, Kirch RD, et al. (2013) A simple implantation method for flexible, multisite microelectrodes into rat brains. Front Neuroengineering 6: 6. doi: 10.3389/fneng.2013.00006.
  11. 11. Kozai TDY, Kipke DR (2009) Insertion shuttle with carboxyl terminated self-assembled monolayer coatings for implanting flexible polymer neural probes in the brain. J Neurosci Methods 184: 199–205. doi: 10.1016/j.jneumeth.2009.08.002.
  12. 12. Hassler C, Guy J, Nietzschmann M, Plachta DTT, Staiger JF, et al. (2016) Intracortical polyimide electrodes with a bioresorbable coating. Biomed Microdevices 18: 81. doi: 10.1007/s10544-016-0106-7.
  13. 13. Jensen W, Yoshida K, Hofmann UG (2006) In-vivo implant mechanics of flexible, silicon-based ACREO microelectrode arrays in rat cerebral cortex. IEEE Trans Biomed Eng 53: 934–940. doi: 10.1109/TBME.2006.872824.
  14. 14. Sharp AA, Ortega AM, Restrepo D, Curran-Everett D, Gall K (2009) In vivo penetration mechanics and mechanical properties of mouse brain tissue at micrometer scales. IEEE Trans Biomed Eng 56: 45–53. doi: 10.1109/TBME.2008.2003261.
  15. 15. Bjornsson CS, Oh SJ, Al-Kofahi YA, Lim YJ, Smith KL, et al. (2006) Effects of insertion conditions on tissue strain and vascular damage during neuroprosthetic device insertion. J Neural Eng 3: 196–207. doi: 10.1088/1741-2560/3/3/002.
  16. 16. Siedentopf H, Zsigmondy R (1902) Uber Sichtbarmachung und Größenbestimmung ultramikoskopischer Teilchen, mit besonderer Anwendung auf Goldrubingläser. Ann Phys 315: 1–39. doi: 10.1002/andp.19023150102.
  17. 17. Huisken J, Swoger J, Del Bene F, Wittbrodt J, Stelzer EHK (2004) Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305: 1007–1009. doi: 10.1126/science.1100035.
  18. 18. Adams MW, Loftus AF, Dunn SE, Joens MS, Fitzpatrick JAJ (2015) Light sheet fluorescence microscopy (LSFM). Curr Protoc Cytom 71: 12.37.1–15. doi: 10.1002/0471142956.cy1237s71.
  19. 19. Adrian RJ (2005) Twenty years of particle image velocimetry. Exp Fluids 39: 159–169. doi: 10.1007/s00348-005-0991-7.
  20. 20. Nayler J, Frazer B (1917) Preliminary report upon an experimental method of investigating, by the aid of kinematographic photography, the history of eddying flow past a model immersed in water. Advisory Committee Aeronaut 1: 1917–18.Google Scholar
  21. 21. Pomfret R, Miranpuri G, Sillay K (2013) The substitute brain and the potential of the gel model. Annals of neurosciences 20: 118–122. doi: 10.5214/ans.0972.7531.200309.
  22. 22. Pitrone PG, Schindelin J, Stuyvenberg L, Preibisch S, Weber M, et al. (2013) OpenSPIM: an open-access light-sheet microscopy platform. Nat Methods 10: 598–599. doi: 10.1038/nmeth.2507.
  23. 23. Greger K, Swoger J, Stelzer EHK (2007) Basic building units and properties of a fluorescence single plane illumination microscope. Rev Sci Instrum 78: 023705. doi: 10.1063/1.2428277.
  24. 24. Gao L, Zhu L, Li C, Wang LV (2014) Nonlinear light-sheet fluorescence microscopy by photobleaching imprinting. J R Soc Interface 11: 20130851. doi: 10.1098/rsif.2013.0851.
  25. 25. Tomer R, Lovett-Barron M, Kauvar I, Andalman A, Burns VM, et al. (2015) SPED light sheet microscopy: fast mapping of biological system structure and function. Cell 163: 1796–1806. doi: 10.1016/j.cell.2015.11.061.

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Mohamed Fadi Yassine
    • 1
  • Kevin Joseph
    • 1
    • 2
  • Ulrich G. Hofmann
    • 1
    • 2
    • 3
  1. 1.Section of Neuroelectronic Systems, NeurosurgeryMedical Center - University of FreiburgFreiburgGermany
  2. 2.Faculty of MedicineUniversity of FreiburgFreiburgGermany
  3. 3.Freiburg Institute for Advanced Studies (FRIAS)University of Freiburg and University of Strasbourg Institute for Advanced Study (USIAS)StrasbourgFrance

Personalised recommendations