1. Tjepkema-Cloostermans MC, Hofmeijer J, Trof RJ, Blans MJ, Beishuizen A, Putten MJAM. Electroencephalogram predicts outcome in patients with postanoxic coma during mild therapeutic hypothermia Critical Care Medicine. 2015;43.
Google Scholar
2. Cloostermans Marleen C., Meulen Fokke B., Eertman Carin J., Hom HaroldW., Putten Michel J. A. M.. Continuous electroencephalography monitoring for early prediction of neurological outcome in postanoxic patients after cardiac arrest Critical Care Medicine. 2012;40:1.
Google Scholar
3. Hofmeijer J, Beernink T.M.J., Bosch F.H., Beishuizen A, Tjepkema-Cloostermans M.C., Putten M.J.A.M.. Early EEG contributes to multimodal outcome prediction of postanoxic coma Neurology. 2015:1–7.
Google Scholar
4. Spalletti M., Carrai R., Scarpino M., et al. Single electroencephalographic patterns as specific and time-dependent indicators of good and poor outcome after cardiac arrest Clinical Neurophysiology. 2016;127:2610–2617.
Google Scholar
5. Sivaraju Adithya, Gilmore Emily J., Wira Charles R., et al. Prognostication of post-cardiac arrest coma: early clinical and electroencephalographic predictors of outcome Intensive Care Medicine. 2015;41:1264–1272.
Google Scholar
6. Tjepkema-Cloostermans MC, Meulen FB, Meinsma G, Putten MJAM. A Cerebral Recovery Index (CRI) for early prognosis in patients after cardiac arrest Critical Care. 2013;17:R252.
Google Scholar
7. Tjepkema-Cloostermans Marleen C., Hofmeijer Jeannette, Beishuizen Albertus, et al. Cerebral Recovery Index: reliable help for prediction of neurological outcome after cardiac arrest Critical Care Medicine. 2017;in press.
Google Scholar
8. Chouard Tanguy, Venema Liesbeth. Machine intelligence Nature. 2015;521:435.
Google Scholar
9. Bengio Y, Courville A, Vincent P. Representation Learning: A Review and New Perspectives Pattern Analysis and Machine Intelligence, IEEE Transactions on. 2013;35:1798–1828.
Google Scholar
10. LeCun Y, Bengio Y, Hinton G. Deep learning Nature. 2015;13:35–35.
Google Scholar
11.Kingma Diederik P., Ba Jimmy Lei. Adam: a Method for Stochastic Optimization International Conference on Learning Representations 2015. 2015:1–15.
Google Scholar
12. Sandroni Claudio, Cavallaro Fabio, Callaway Clifton W, et al. Predictors of poor neurological outcome in adult comatose survivors of cardiac arrest: A systematic review and meta-analysis. Part 2: Patients treated with therapeutic hypothermia Resuscitation. 2013;84:1324–1338.
Google Scholar
13. Lasko TA, Denny JC, Levy MA. Computational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data PLoS One 8(6): e66341. 2013.
Google Scholar
14. Che Z, Kale D, Li W, Bahadori MT,, Liu Y. Deep Computational Pheno- typing Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2015:507–516.
Google Scholar
15. Johansen Alexander Rosenberg, Jin Jing, Maszczyk Tomasz, Dauwels Justin, Cash Sydney S,WestoverMBrandon. Epileptiform spike detection via convolutional neural networks IEEE ICASSP. 2016:754–758.
Google Scholar
16. Jinbo Sun Wei Qin. Dakun Tan Rui Zhao. Sleep spindle detection using deep learning: A validation study based on crowdsourcing. Conf Proc IEEE Eng Med Biol Soc. 2015 Aug;2015:2828-31. doi: 10.1109/EMBC.2015.7318980. 2015.
17. Berger Hans. U¨ ber das Elektroenkephalogramm des Menschen. Archiv f¨ur Psychiatrie und Nervenkrankheiten. 1929;87:527–570.
Google Scholar