Skip to main content

Simulations of Membrane Effects of Cells After Exposure to Ultrashort Pulses

  • Chapter
  • First Online:
Ultrashort Electric Pulse Effects in Biology and Medicine

Part of the book series: Series in BioEngineering ((SERBIOENG))

  • 511 Accesses

Abstract

Externally applied nanosecond electric pulses are useful to trigger and tailor bioeffects in cells and tissues. However, the parameter space is large given the different types of cells, and the wide range of potential electrical parameters (such as pulse durations and waveforms, field intensities, and number of pulses) that are available for use. To maximize benefits, tailor a desired response, and devise an efficient system, it becomes necessary to first understand and quantify the biological behavior driven by the electrical input. Model development based on the inherent biophysical processes is an elegant and cost-effective option to help advance this technology. Given the merits and need for modeling then, this chapter focuses on the various schemes for analysis and simulations of the electrically driven bioeffects. Schemes ranging from molecular level descriptions to an averaged continuum analyses are presented and discussed in this chapter. Relevant examples and illustrative result are also given in this context of cellular bioelectrics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abidor IG, Arakelyan VB, Chemomordik Y, Chizmadzhev A, Pastushenko VF, Tarasevich MR (1979) The electrical breakdown of cell and lipid membranes: the similarity of phenomenologies. Bioelectrochem Bioenergy 6:37–52

    Google Scholar 

  • Ahmed M, Brace CL, Lee FT Jr, Goldberg SN (2011) Principles of and advances in percutaneous ablation. Radiology 258:351–369

    Article  Google Scholar 

  • Aihara HJ, Miyazaki J (1998) Gene transfer into muscle by electroporation in vivo. Nat Biotechnol 16:867–870

    Google Scholar 

  • Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Clarendon Press, Oxford

    MATH  Google Scholar 

  • André FM, Gehl J, Sersa G, Préat V, Hojman P, Eriksen J, Golzio M, Cemazar M, Pavselj N, Rols MP, Miklavčič D, Neumann E, Teissié J, Mir LM (2008) Efficiency of high- and low-voltage pulse combinations for gene electrotransfer in muscle, liver, tumor, and skin. Hum Gene Ther 19:1261–1271

    Article  Google Scholar 

  • Anezo C, de Vries AH, Holtje HD, Tieleman DP, Marrink SJ (2003) Methodological issues in lipid bilayer simulations. J Phys Chem B 107, 9424–9433

    Google Scholar 

  • Arnold WM, Zimmermann U (1984) Electric field-induced fusion and rotation of cells. In: Biological membranes, vol 5. Academic Press, London, pp 389–454

    Google Scholar 

  • Asencor FJ, Santamaria C, Iglesias FJ, Dominguez A (1993) Dielectric energy of orientation in dead and living cells of Schizosaccharomyces pombe: fitting of experimental results to a theoretical model. Biophys J 64:1626–1631

    Article  Google Scholar 

  • Barnett A, Weaver JC (1991) Electroporation: a unified, quantitative theory of reversible electrical breakdown and mechanical rupture in artificial planar bilayer membranes. Bioelectrochem Bioenerg 25:163–182

    Article  Google Scholar 

  • Batzing BL (2002) Microbiology: an introduction. Thompson Learning, Pacific Grove, CA

    Google Scholar 

  • Becker FF, Wang XB, Huang Y, Pethig R, Vykoukal J, Gascoyne P (1995) Proc Natl Acad Sci 92:860–864

    Article  Google Scholar 

  • Beebe SJ, Blackmore PF, White J, Joshi RP, Schoenbach KH (2004) Nanosecond pulsed electric fields modulate cell function through intracellular signal transduction mechanisms. Physiol Meas 25:1077–1093

    Article  Google Scholar 

  • Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  Google Scholar 

  • Berkowitz ML (2009) Detailed molecular dynamics simulations of model biological membranes containing cholesterol. Biochim Biophys Acta (BBA) Biomembr 1788:86–96

    Google Scholar 

  • Berkowitz ML, Bostick DL, Pandit S (2006) Aqueous solutions next to phospholipid membrane surfaces: insights from simulations. Chem Rev 106:1527–1539

    Article  Google Scholar 

  • Blank M (ed) (1995) Electromagnetic fields: biological interactions and mechanisms. American Chemical Society, New York

    Google Scholar 

  • Bockmann RA, de Groot BL, Kakorin S, Neumann E, Grubmuller H (2008) Kinetics, statistics, and energetics of lipid membrane electroporation studied by molecular dynamics simulations. Biophys J 95:1837–1850

    Article  Google Scholar 

  • Calvet CY, Mir LM (2016) The promising alliance of anti-cancer electrochemotherapy with immunotherapy. Cancer Metastasis Rev 35:165–177

    Article  Google Scholar 

  • Calvet CY, André FM, Mir LM (2014) Dual therapeutic benefit of electroporation-mediated DNA vaccination in vivo. Oncoimmunology 3:e28540

    Article  Google Scholar 

  • Chang DC (1992) Structure and dynamics of electric field-induced membrane pores as revealed by rapid-freezing electron microscopy. In: Guide to electroporation and electrofusion. Academic Press, Orlando, pp 9–27

    Google Scholar 

  • Chiu SW, Clark M, Jakobsson E, Subramaniam S, Scott HL (1999) Optimization of hydrocarbon chain interaction parameters: application to the simulation of fluid phase lipid bilayers. J Phys Chem B 103:6323–6327

    Article  Google Scholar 

  • COMSOL MULTIPHYSICS 4.2b _ 1997e2011, COMSOL, Inc. https://www.comsol.com/products/acdc/

  • Corovic S, Zupanic A, Miklavčič D (2008) Numerical modeling and optimization of electric field distribution in subcutaneous tumor treated with electrochemotherapy using needle electrodes. IEEE Trans Plasma Sci 36:1665–1672

    Article  Google Scholar 

  • Crozier PS, Henderson D, Rowley RL, Busath DD (2001) Model channel ion currents in NaCl extended simple point charge water solution with applied-field molecular dynamics. Biophys J 81:3077–3089

    Article  Google Scholar 

  • Darden T, York D, Pedersen L (1993) Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  Google Scholar 

  • Daud AI, DeConti RC, Andrews S, Urbas P, Riker AI, Sondak VK, Munster PN, Sullivan DM, Ugen KE, Messina JL, Heller R (2008) Phase I trial of interleukin-12 plasmid electroporation in patients with metastatic melanoma. J Clin Oncol 26:5896–6903

    Article  Google Scholar 

  • Dereniowski D, Dariusz M (2004) Cholesky factorization of matrices in parallel and ranking of graphs. In: 5th international conference on parallel processing and applied mathematics, Lecture notes on computer science, vol 3019. Springer-Verlag, New York, pp 985–992

    Google Scholar 

  • Dujardin E, Ebbesen TW, Hiura H, Tanigaki K (1994) Capillarity and wetting of carbon nanotubes. Science 265:1850–1852

    Article  Google Scholar 

  • Edd JF, Horowitz L, Davalos RV, Mir LM, Rubinsky B (2006) Vivo results of a new focal tissue ablation technique: irreversible electroporation. IEEE Trans Biomed Eng 53:1409–1415

    Article  Google Scholar 

  • Edholm O (2008) Time and length scales in lipid bilayer simulations. In: Feller SE (ed) Computational modeling of membrane bilayers, vol 60. Current topics in membranes. Elsevier, London, pp 91–110

    Chapter  Google Scholar 

  • Ermolina I, Polevaya Y, Feldman Y, Ginzburg B, Schlesinger M (2001) Study of normal and malignant white blood cells by time domain di-electric spectroscopy. IEEE Trans Dielect Elect Insulation 8:253–261

    Article  Google Scholar 

  • Esser AT, Smith KC, Gowrishankar TR, Vasilkoski Z, Weaver JC (2010) Mechanisms for the intracellular manipulation of organelles by conventional electroporation. Biophys J 98:2506–2514

    Article  Google Scholar 

  • Feller SE, Gawrisch K, MacKerell AD (2002) Polyunsaturated fatty acids in lipid bilayers: intrinsic and environmental contributions to their unique physical properties. J Am Chem Soc 124:318–326

    Article  Google Scholar 

  • Feller SE (ed) (2008) Computational modeling of membrane bilayers. In: Current topics in membranes, vol 60. Elsevier, London

    Google Scholar 

  • Forrest LR, Sansom MSP (2000) Membrane simulations: bigger and better. Curr Opin Struct Biol 10:174–181

    Article  Google Scholar 

  • Foster KR (2000) Thermal and nonthermal mechanisms of interaction of radio-frequency energy with biological systems. IEEE Trans Plasma Sci 28:15–23

    Article  Google Scholar 

  • Foster KR, Schwan HP (1995) Dielectric properties of tissues—a review. In: Polk C, Postow E (eds) Handbook of biological effects of electromagnetic radiation. CRC Press, Boca Raton, pp 26–102

    Google Scholar 

  • Freeman SA, Wang MA, Weaver JC (1994) Theory of electroporation of planar bilayer membranes: predictions of the aqueous area, change in capacitance, and pore-pore separation. Biophys J 67:42–56

    Article  Google Scholar 

  • Frey W, White JA, Price RO, Joshi RP, Nuccitelli R, Beebe SJ, Schoenbach KH, Kolb JF (2006) Plasma membrane voltage changes during nanosecond pulsed electric field exposure. Biophys J 90:3608–3615

    Article  Google Scholar 

  • Fuhr G, Glaser R, Hagedorn R (1986) Rotation of dielectrics in a rotating electric high-frequency field. Model experiments and theoretical explanation of the rotation effect of living cells. Biophys J 49:395–402

    Article  Google Scholar 

  • Gascoyne PR, Vykoukal J (2002) Particle separation by dielectrophoresis. Electrophoresis 23:1973–1983

    Article  Google Scholar 

  • Gimsa J, Wachner D (1999) A polarization model overcoming the geometric restrictions of the Laplace solution for spheroidal cells: Obtaining new equations for field-induced forces and transmembrane potential. Biophys J 77:1316–1326

    Article  Google Scholar 

  • Gimsa J, Wachner D (2001) Analytical description of the transmembrane voltage induced on arbitrarily oriented ellipsoidal and cylindrical cells. Biophys J 81:1888–1896

    Article  Google Scholar 

  • Glaser RW, Leikin SL, Chernomordik LV, Pastushenko VF, Sokirko I (1988) Reversible electrical breakdown of lipid bilayers: formation and evolution of pores. Biochim Biophys Acta 940:275–287

    Article  Google Scholar 

  • Gothelf A, Gehl J (2010) Gene electrotransfer to skin; Review of existing literature and clinical perspectives. Curr Gene Ther 10:287–299

    Article  Google Scholar 

  • Grosse C, Schwan HP (1992) Cellular membrane potentials induced by alternating fields. Biophys J 63:1632–1642

    Article  Google Scholar 

  • Gurtovenko AA, Miettinen M, Karttunen M, Vattulainen I (2005) Effect of monovalent salt on cationic lipid membranes as revealed by molecular dynamics simulations. J Phys Chem B 109:21126–21134

    Article  Google Scholar 

  • Hart FX (2009) Bioimpedance in the clinic. Zdravstveni Vestnik 78:782–790

    Google Scholar 

  • Heller L, Heller R (2006) In vivo electroporation for gene therapy. Hum Gene Ther 17:890–897

    Article  Google Scholar 

  • Hess B, Bekker H, Berendsen HJ (1997) LINCS: A linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472

    Article  Google Scholar 

  • Hofsäß C, Lindahl E, Edholm O (2003) Molecular dynamics simulations of phospholipid bilayers with cholesterol. Biophys J 84:2192–2206

    Article  Google Scholar 

  • Hu Q, Joshi RP (2009a) Analysis of intense, subnanosecond electrical pulse-induced transmembrane voltage in spheroidal cells with arbitrary orientation. IEEE Trans Biomed Eng 56:1617–1626

    Article  Google Scholar 

  • Hu Q, Joshi RP (2009b) Transmembrane voltage analyses in spheroidal cells in response to an intense subnanosecond electrical pulse. Phys Rev E 79:011901/1–8.

    Google Scholar 

  • Hu Q, Viswanadham S, Joshi RP, Schoenbach KH, Beebe SJ, Blackmore PF (2005a) Simulations of transient membrane behavior in cells subjected to a high-intensity ultrashort electric pulse. Phys Rev E 71:031914

    Article  Google Scholar 

  • Hu Q, Joshi RP, Schoenbach KH (2005b) Simulations of nanopore formation and phosphatidylserine externalization in lipid membranes subjected to a high-intensity, ultrashort electric pulse. Phys Rev E 72:031902/1-10

    Google Scholar 

  • Hu Q, Sridhara V, Joshi RP, Kolb JF, Schoenbach KH (2006) Molecular dynamics analysis of high electric pulse effects on bilayer membranes containing DPPC and DPPS. IEEE Trans Plasma Sci 34(4):1405–1411

    Article  Google Scholar 

  • Hu Q, Zhang Z, Qiu H, Kong M, Joshi RP (2013) Physics of nanoporation and water entry driven by a high-intensity, ultrashort electrical pulse in the presence of cellular hydrophobic interactions. Phys Rev E 87:032704/1-9

    Google Scholar 

  • Jerry RA, Popel AS, Brownell WE (1996) Potential distribution for a spheroidal cell having a conductive membrane in an electric field. IEEE Trans Biomed Eng 43:970–972

    Article  Google Scholar 

  • Jordan CA, Neumann E, Sowers AE (2013) Electroporation and electrofusion in cell biology. Springer Science and Business Media, New York

    Google Scholar 

  • Joshi RP, Schoenbach KH (2010) Bioelectric effects of intense ultrashort pulses. Critical Rev Bio-Med Eng 38:255–304

    Article  Google Scholar 

  • Joshi RP, Schoenbach KH (2011) Electric fields in biological cell and membranes. In: Electromagnetic fields in biological systems. CRC Press, Boca Raton, FL

    Google Scholar 

  • Joshi RP, Song J (2010) Model analysis of electric fields induced by high-voltage pulsing in cylindrical nerves. IEEE Trans Plasma Sci 38:2894–2900

    Article  Google Scholar 

  • Joshi RP, Hu Q, Aly R, Schoenbach KH, Hjalmarson HP (2001) Self-consistent simulations of electroporation dynamics in biological cells subjected to ultrafast electrical pulses. Phys Rev E 64:11913

    Article  Google Scholar 

  • Joshi RP, Hu Q, Schoenbach KH (2004) Modeling studies of cell response to ultrashort, high-intensity electric fields—implications for intracellular manipulation. IEEE Trans Plasma Sci 32:1677–1686

    Article  Google Scholar 

  • Joshi RP, Mishra A, Song J, Pakhomov A, Schoenbach KH (2008) Simulation studies of ultra-short, high-intensity electric pulse induced action potential block in whole-animal nerves. IEEE Trans Biomed Eng 55:1391–1398

    Article  Google Scholar 

  • Jourabchi N, Beroukhim K, Tafti BA, Kee ST, Lee EW (2014) Irreversible electroporation (NanoKnife) in cancer treatment. Gastrointestinal Intervention 3:8–18

    Article  Google Scholar 

  • Kotnik T, Miklavčič D (2000) Analytical description of transmembrane voltage induced by electric fields on spheroidal cells. Biophys J 79:670–679

    Article  Google Scholar 

  • Kotnik T, Miklavčič D (2006) Theoretical evaluation of voltage inducement on internal membranes of biological cells exposed to electric fields. Biophys J 90:480–491

    Article  Google Scholar 

  • Kotnik T, Bobanović F, Miklavčič D (1997) Sensitivity of transmembrane voltage induced by applied electric fields—a theoretical analysis. Bioelectrochem Bioenerg 43:285–291

    Article  Google Scholar 

  • Kotnik T, Kramar P, Pucihar G, Miklavčič D, Tarek M (2012) Cell membrane electroporation—Part 1: The phenomenon. IEEE Electr Insul Mag 28:14–23

    Article  Google Scholar 

  • Latouche EL, Arena CB, Ivey JW, Garcia PA, Pancotto TE, Pavlisko N, Verbridge SS, Davalos RV, Rossmeisl JH (2018) High-frequency irreversible electroporation for intracranial meningioma: a feasibility study in a spontaneous canine tumor model. Technol Cancer Res Treatment 17:1–10

    Article  Google Scholar 

  • Leach AR (2001) Molecular modelling: principles and applications, 2nd edn. Prentice Hall, Englewood

    Google Scholar 

  • Levin M (2014) Molecular bioelectricity: how endogeneous voltage potentials control cell behavior and instruct pattern regulation in vivo. Mol Biol Cell 25:3835–3850

    Article  Google Scholar 

  • Levin M, Pezzulo G, Finkelstein JM (2017) Endogenous bioelectric signaling networks: exploiting voltage gradients for control of growth and form. Annu Rev Biomed Eng 19:353–387

    Article  Google Scholar 

  • Lindahl E, Edholm O (2000) Mesoscopic undulations and thickness fluctuations in lipid bilayers from molecular dynamics simula-tions. Biophys J 79:426–433

    Article  Google Scholar 

  • Lindahl E, Sansom MSP (2008) Membrane proteins: molecular dynamics simulations. Curr Opin Struct Biol 18:425–431

    Article  Google Scholar 

  • Lohmann KJ, Lohmann CMF (1996) Detection of magnetic field intensity by sea turtles. Nature 380:59–61

    Article  Google Scholar 

  • Low L, Mander A, McCann K, Dearnaley D, Tjelle T, Mathisen I, Stevenson F, Ottensmeier CH (2009) DNA vaccination with electroporation induces increased antibody responses in patients with prostate cancer. Human Gene Ther 20:1269–1278

    Article  Google Scholar 

  • Marrink SJ, Mark AE (2001) Effect of undulations on surface tensioncin simulated bilayers. J Phys Chem B 105:6122–6127

    Article  Google Scholar 

  • Marrink SJ, de Vries AH, Tieleman DP (2009) Lipids on the move: simulations of membrane pores, domains, stalks and curves. Biochim Biophys Acta Biomembr 1788:149–168

    Article  Google Scholar 

  • Marty M, Sersa G, Garbay JR, Gehl J, Collins CG, Snoj M, Billard V, Geerrtsen PF, Larkin JO, Miklavčič D, Pavlovic I, Paulin-Kosir SM, Cemezar M, Morsli N, Soden DM, Rudolf Z, Robert C, O’Sullivan GC, Mir LM (2006) Eur J Cancer Suppl 4:3–13

    Article  Google Scholar 

  • Mashl RJ, Scott HL, Subramaniam S, Jakobsson E (2001) Molecular simulation of dioleylphosphatidylcholine bilayers at differing levels of hydration. Biophys J 81:3005–3015

    Article  Google Scholar 

  • Maswiwat K, Wachner D, Warnke R, Gima J (2007) Simplified equations for the transmembrane potential induced in ellipsoidal cells of rotational symmetry. J Phys D 40:914–923

    Article  Google Scholar 

  • McCaig CD, Rajnicek AM, Song B, Zhao M (2005) Controlling cell behavior electrically: current views and future potential. Physiol Rev 85:943–978

    Article  Google Scholar 

  • Meglic SH, Kotnick T (2016) Electroporation-based applications in biotechnology. In: Miclavčič (ed) Handbook of electroporation. Springer International Publishing, Cham, Switzerland

    Google Scholar 

  • Meng S, Rouabhia M, Zhang Z (2013) Electrical stimulation modulates osteoblast proliferation and bone protein production through heparin-bioactivated conductive scaffolds. Bioelectromagnetics 34:189–199

    Article  Google Scholar 

  • Miklavčič D, Mali B, Kos B, Heller R, Serša G (2014) Electrochemotherapy: from the drawing board into medical practice. BioMed Eng OnLine 13:29

    Article  Google Scholar 

  • Mir LM, Belehradek M, Domenge C, Orlowski S, Poddevin B, Belehradek J Jr, Schwaab G, Luboinski B, Paoletti C (1991) C R Acad Sci III(313):613–618

    Google Scholar 

  • Napotnik TB, Reberšek M, Vernier PT, Mali B, Miklavčič D (2016) Effects of high voltage nanosecond electric pulses on eukaryotic cells (in vitro): a systematic review. Bioelectrochemistry 110:1–12

    Article  Google Scholar 

  • Neu JC, Krassowska W (1999) Asymptotic model of electroporation. Phys Rev E 59:3471–3482

    Article  Google Scholar 

  • Neu JC, Krassowska W (2003) Modeling postshock evolution of large electropores. Phys Rev E 67:021915/1–12

    Google Scholar 

  • Neumann E, Rosenheck K (1972) Permeability changes induced by electric impulses in vesicular membranes. J Membr Biol 10:279–290

    Article  Google Scholar 

  • Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 1:841–845

    Article  Google Scholar 

  • Nuccitelli R, Pliquett U, Chen X, Ford W, Swanson RJ, Beebe SJ, Kolb JF, Schoenbach KH (2006) Nanosecond pulsed electric fields cause melanomas to self-destruct. Biochem Biophys Res Commun 343:351–360

    Article  Google Scholar 

  • Nuccitelli R, Wood R, Kreis M, Athos B, Huynh J, Liu K, Nuccitelli P, Epstein EH (2014) First-in-human trial of nanoelectroablation therapy for basal cell carcinoma: proof of method. Exp Dermatol 23:135–137

    Article  Google Scholar 

  • Nuccitelli R, Berridge JC, Mallon Z, Kreis M, Athos B, Nuccitelli P (2015) Nanoelectroablation of murine tumors triggers a CD8-dependent inhibition of secondary tumor growth. PLoS ONE 10:e0134364/1-17

    Google Scholar 

  • Pastushenko VF, Chhizmadzhev YA (1982) The theory of bilayer lipid membrane electric clamp splitting of the energetic barrier. Biofizika 27:475–479

    Google Scholar 

  • Pauly H, Schwan HP (1959) Über die Impedanz einer Suspension von kugelformigen Teilchen mit einer Schale. Z Naturforsch B 14:125–131

    Article  Google Scholar 

  • Pavlin M, Kandušer M (2015) New insights into the mechanisms of gene electrotransfer–experimental and theoretical analysis. Scientific Reports 5:9132 pp 1–11

    Google Scholar 

  • Pohl HA, Crane JS (1971) Dielectrophoresis of Cells. Biophys J 11:711–727

    Article  Google Scholar 

  • Polk C, Postow E (1996) Handbook of biological effects of electromagnetic fields, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Prausnitz MR, Bose VG, Langer R, Weaver JC (1993) Electroporation of mammalian skin: a mechanism to enhance transdermal drug delivery. Proc Natl Acad Sci USA 90:10504–10508

    Article  Google Scholar 

  • Pucihar G, Kotnik T, Kandušer M, Miklavčič D (2001) The influence of medium conductivity on electropermeabilization and survival of cells in vivo. Bioelectrochemistry 54:107–115

    Article  Google Scholar 

  • Pucihar G, Kotnik T, Valic B, Miklavčič D (2006) Numerical determination of transmembrane voltage induced on irregularly shaped cell. Ann Biomed Eng 34:642–652

    Article  Google Scholar 

  • Puller CE, Isseroff RR (2005) Cyclic AMP mediates keratinocyte directional migration in an electric field. J Cell Sci 118:2023–2034

    Article  Google Scholar 

  • Puller CE (ed) (2011) The physiology of bioelectricity in development, tissue regeneration and cancer. CRC Press, Boca Raton, FL, p 342

    Google Scholar 

  • Radu M, Ionescu M, Irimescu N, Iliescu K, Pologea-Moraru R, Kovacs E (2005) Orientation behavior of retinal photoreceptors in alternating electric fields. Biophys J 89:3548–3554

    Article  Google Scholar 

  • Robinson KR, Messerli MA (2003) The role of endogenous electric fields as directional signals in development, repair and invasion. BioEssays 25:759–766

    Article  Google Scholar 

  • Rols MP, Teissie J (1998) Electropermeabilization of mammalian cells to macromolecules: control by pulse duration. Biophys J 75:1415–1423

    Article  Google Scholar 

  • Rosazza C, Meglic SH, Zumbusch A, Rols MP, Miklavčič D (2016) Curr Gene Ther 16:98–129

    Google Scholar 

  • Saiz L, Klein ML (2001) Structural properties of a highly polyunsaturated lipid bilayer from molecular dynamics simulations. Biophys J 81:204–216

    Article  Google Scholar 

  • Sano MB, Arena CB, Bittleman KR, DeWitt MR, Cho HJ, Szot CS, Saur D, Cissel JM, Robertson J, Lee YW, Davalos RV (2015) Bursts of bipolar microsecond pulses inhibit tumor growth. Sci Rep 5:14999

    Article  Google Scholar 

  • Sauer FA (1983) Forces on suspended particles in the electromagnetic field. In: Coherent excitations in biological systems. Springer, New York, pp 134–144

    Google Scholar 

  • Schmidt G, Juhasz-Böss I, Solomayer EF, Herr D (2014) Electrochemotherapy in breast cancer: a review of references. Geburtshilfe Frauenheilkd 74:557–562

    Google Scholar 

  • Schoenbach KH, Hargrave B, Joshi RP, Kolb JF, Nuccitelli R, Osgood C, Pakhomov A, Stacey M, Swanson RJ, White J, Xiao S, Zhang J, Beebe SJ, Blackmore PF, Buescher ES (2007) Bioelectric effects of intense nanosecond pulses. IEEE Trans Dielectr Electr Insul 14:1088–1109

    Article  Google Scholar 

  • Schoenbach KH, Pakhomov AG, Semenov I, Xiao S, Pakhomova ON, Ibey BL (2015) Ion transport into cells exposed to monopolar and bipolar nanosecond pulses. Bioelectrochemistry 103:44–51

    Article  Google Scholar 

  • Schwan HP (1983) Biophysics of the interaction of electromagnetic energy will cells and membranes. In: Grandolfo M, Michaelson SM, Rindl A (eds) Biological effects and dosimetry of nonionizing radiation. Plenum Press, New York, pp 213–231

    Chapter  Google Scholar 

  • Sersa G, Teissie J, Cemazar M, Signori E, Kamensek U, Marshal G, Miklavčič D (2015) Electrochemotherapy of tumors as in situ vaccination boosted by immunogene electrotransfer. Cancer Immunol Immunother 64:1315–1327

    Article  Google Scholar 

  • Siu SWI, R. Vacha R, Jungwirth P, Bockmann RA (2008) Biomolecular simulations of membranes: physical properties from different force fields. J Chem Phys 128:125103

    Google Scholar 

  • Smith KC, Gowrishankar TR, Esser AT, Stewart DA, Weaver JC (2006) The spatially distributed dynamic transmembrane voltage of cells and organelles due to 10 ns pulses: meshed transport networks. IEEE Trans Plasma Sci 34:1394–1404

    Article  Google Scholar 

  • Stampfli R (1958) Reversible electrical breakdown of the excitable membrane of a Ranvier node. An Acad Bras Cienc 30:57–63

    Google Scholar 

  • Stewart DA, Gowrishankar TR, Weaver JC (2004) Transport lattice approach to describing cell electroporation: use of a local asymptotic model. IEEE Trans Plasma Sci 32:1696–1708

    Article  Google Scholar 

  • Tarek M (2005) Membrane electroporation: a molecular dynamics simulation. Biophys J 88:4045–4053

    Article  Google Scholar 

  • Tieleman DP (2004) The molecular basis of electroporation. BMC Biochem 5:10

    Article  Google Scholar 

  • Tieleman DP, Marrink SJ, Berendsen HJC (1997) A computer perspective of membranes: molecular dynamics studies of lipid bilayer systems. Biochim Biophys Acta 1331:235–270

    Article  Google Scholar 

  • Tieleman DP, Berendsen JHC, Sansom MSP (2001) Voltage-dependent insertion of alamethicin at phospholipid/water and octane water interfaces. Biophys J 80:331–346

    Article  Google Scholar 

  • Titomirov AV, Sukharev S, Kistanova E (1991) In vivo electroporation and stable transformation of skin cells of newborn mice by plasmid DNA. Biochim Biophys Acta 1088:131–134

    Article  Google Scholar 

  • Tobias DJ, Tu K, Klein ML (1997) Atomic-scale molecular dynamics simulations of lipid membranes. Curr Opin Colloid Interface Sci 2:15–26

    Article  Google Scholar 

  • Tsong TY (1991) Electroporation of cell membranes. Biophys J 60:297–306

    Google Scholar 

  • van Gunsteren WF, Berendsen HJC (1987) Gromos User Manual, BIOMOS Biomolecular Software. Laboratory of Physical Chemistry, University of Groningen, Groningen

    Google Scholar 

  • Vernier PT, Sun Y, Marcu L, Salemi S, Craft CM, Gundersen MA (2003) Calcium bursts induced by nanosecond electric pulses. Biochem Biophys Res Commun 310:286–295

    Article  Google Scholar 

  • Vernier PT, Sun Y, Marcu L, Craft CM, Gundersen MA (2004) Nanoelectropulse-induced phosphatidylserine translocation. Biophys J 86:4040–4048

    Article  Google Scholar 

  • Weaver JC, Chizmadzhev YA (1996) Theory of electroporation: a review. Bioelectrochem Bioenerg 41:135–160

    Article  Google Scholar 

  • Yarmush ML, Golberg A, Sersa G, Kotnik T, Miklavčič D (2014) Electroporation-based technologies for medicine: principles, applications, and challenges. Annu Rev Biomed Eng 16:295–320

    Article  Google Scholar 

  • Ziegler MJ, Vernier PT (2008) Interface water dynamics and porating electric fields for phospholipid bilayers. J Phys Chem B 112:13588–13596

    Article  Google Scholar 

  • Zimmermann U (1982) Electric field-mediated fusion and related electrical phenomena. Biochimica et Biophysica Acta (BBA)-Reviews on Biomembranes 694:227–277

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Joshi, R. (2021). Simulations of Membrane Effects of Cells After Exposure to Ultrashort Pulses. In: Ultrashort Electric Pulse Effects in Biology and Medicine. Series in BioEngineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-5113-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5113-5_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5112-8

  • Online ISBN: 978-981-10-5113-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics