Skip to main content

usEPs in Pre-clinical Cancer Treatment

  • Chapter
  • First Online:
Ultrashort Electric Pulse Effects in Biology and Medicine

Part of the book series: Series in BioEngineering ((SERBIOENG))

  • 480 Accesses

Abstract

One of the earliest possible medical applications for usEPs was to ablate tumors. Many laboratories carried out many studies to investigate the potential for usEPs to serve as a cancer therapy. Like simulations with cells in suspension, usEPs also passed through cells in tumor tissues forming high-density nanopores in all cell membranes as supraelectroporation, distinct from conventional electroporation. The first studies were smaller in scope, but showed proof of principle that usEPs could reduce fibrosarcoma tumor volume in mice. More extensive studies followed, showing that usEPs could treat B16f10 melanoma tumors in mice, although some tumors required more than one and as many as  six 300 ns, 40 kV/cm treatment (6 × 1.2 Vs/cm). Later studies showed that as many as 5–6 Vs/cm was required to eliminate tumors completely. The blood supply to these melanoma tumors was also  reduced,  as was revascularization, as shown using endothelial markers. Other studies showed that usEPs ablated mouse liver tumors. While all of these studies  investigated ectopic tumors within mice's flanks, studies also showed that usEPs could also completely ablate orthotopic rat liver tumors, using a 5-needle array with heterogeneous electric fields. Other studies demonstrated that usEPs could eliminate many different tumor types in mice, including some human tumors in immunodeficient mice. One study showed decreased tumor sizes in dog osteosarcoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bardet SM, Carr L, Soueid M, Arnaud-Cormos D, Leveque P, O’Connor RP (2016) Multiphoton imaging reveals that nanosecond pulsed electric fields collapse tumor and normal vascular perfusion in human glioblastoma xenografts. Sci Rep 6:34443

    Article  Google Scholar 

  • Beebe SJ (2015) Considering effects of nanosecond pulsed electric fields on proteins. Bioelectrochemistry 103:52–59

    Article  Google Scholar 

  • Beebe SJ, Fox PM, Rec LH, Buescher ES, Somers K, Schoenbach KH (2002) Nanosecond pulsed electric field (nsPEF) effects on cells and tissues: apoptosis induction and tumor growth inhibition. IEEE Trans Plasma Sci 30:286–292

    Article  Google Scholar 

  • Beebe SJ, Fox PM, Rec LJ, Willis EL, Schoenbach KH (2003) Nanosecond, high-intensity pulsed electric fields induce apoptosis in human cells. FASEB J 17:1493–1495

    Article  Google Scholar 

  • Beebe SJ, Chen YJ, Sain NM, Schoenbach KH, Xiao S (2012) Transient features in nanosecond pulsed electric fields differentially modulate mitochondria and viability. PLoS ONE 7(12):e51349

    Article  Google Scholar 

  • Beebe SJ, Sain NM, Ren W (2013) Induction of cell death mechanisms and apoptosis by nanosecond pulsed electric fields (nsPEFs). Cells 2:136–162

    Article  Google Scholar 

  • Borrelli MJ, Thompson LL, Cain CA, Dewey WC (1990) Time-temperature analysis of cell killing of BHK cells heated at temperatures in the range of 43.5–57.0 ℃. Int J Radiat Oncol Biol Phys 19(2):389–399

    Google Scholar 

  • Chen X, Kolb JF, Swanson RJ, Schoenbach KH, Beebe SJ (2010) Apoptosis initiation and angiogenesis inhibition: melanoma targets for nanosecond pulsed electric fields. Pigment Cell Melanoma Res 23:554–563

    Article  Google Scholar 

  • Chen X, Zhuang J, Kolb JF, Schoenbach KH, Beebe SJ (2012) Long term survival of mice with hepatocellular carcinoma after pulse power ablation with nanosecond pulsed electric fields. Technol Cancer Res Treat 11:83–93

    Article  Google Scholar 

  • Chen R, Sain NM, Harlow KT, Chen YJ, Shires PK, Heller R, Beebe SJ (2014a) A protective effect after clearance of orthotopic rat hepatocellular carcinoma by nanosecond pulsed electric fields. Eur J Cancer 50:2705–2713

    Google Scholar 

  • Chen X, Yin S, Hu C, Chen X, Jiang K, Ye S, Feng X, Fan S, Xie H, Zhou L, Zheng S (2014b) Comparative study of nanosecond electric fields in vitro and in vivo on hepatocellular carcinoma indicate macrophage infiltration contribute to tumor ablation in vivo. PLoS ONE 9(1):e86421

    Article  Google Scholar 

  • Chen X, Chen Y, Jiang J, Wu L, Yin S, Miao X, Swanson RJ, Zheng S (2017) Nano-pulse stimulation (NPS) ablate tumors and inhibit lung metastasis on both canine spontaneous osteosarcoma and murine transplanted hepatocellular carcinoma with high metastatic potential. Oncotarget 8(27):44032–44039

    Article  Google Scholar 

  • Datta SR, Ranger AM, Lin MZ, Sturgill JF, Ma YC, Cowan CW, Dikkes P, Korsmeyer SJ, Greenberg ME (2002) Survival factor-mediated BAD phosphorylation raises the mitochondrial threshold for apoptosis. Dev Cell 3:631–643

    Article  Google Scholar 

  • David KK, Andrabi SA, Dawson TM, Dawson VL (2009) Parthanatos, a messenger of death. Front Biosci 14:1116–1128

    Article  Google Scholar 

  • Deveraux QL, Takahashi R, Salvesen GS, Reed JC (1997) X-linked IAP is a direct inhibitor of cell-death proteases. Nature 388:300–304

    Article  Google Scholar 

  • Edelblute CM, Guo S, Hornef J, Yang E, Jiang C, Schoenbach K, Heller R (2018) Moderate heat application enhances the efficacy of nanosecond pulse stimulation for the treatment of squamous cell carcinoma. Technol Cancer Res Treat 17:1533033818802305

    Article  Google Scholar 

  • Esser AT, Smith KC, Gowrishankar TR, Weaver JC (2009) Towards solid tumor treatment by nanosecond pulsed electric fields. Technol Cancer Res Treat 8(4):289–306

    Article  Google Scholar 

  • Ford WE, Ren W, Blackmore PF, Schoenbach KH, Beebe SJ (2010) Nanosecond pulsed electric fields stimulate apoptosis without release of pro-apoptotic factors from mitochondria in B16f10 melanoma. Arch Biochem Biophys 497(1–2):82–89

    Google Scholar 

  • Garon EB, Sawcer D, Vernier PT, Tang T, Sun Y, Marcu L, Gundersen MA, Koeffler HP (2007) In vitro and in vivo evaluation and a case report of intense nanosecond pulsed electric field as a local therapy for human malignancies. Int J Cancer 121(3):675–682

    Article  Google Scholar 

  • Gatzka MV (2018) Targeted tumor therapy remixed-an update on the use of small-molecule drugs in combination therapies. Cancers (Basel) 10 pii:E155. https://doi.org/10.3390/cancers10060155

  • Goebeler M, Roth J, Teigelkamp S, Sorg C (1994) The monoclonal antibody MAC387 detects an epitope on the calcium-binding protein MRP14. J Leukoc Biol 55(2):259–261

    Article  Google Scholar 

  • Gowrishankar TR, Weaver JC (2006) Electrical behavior and pore accumulation in a multicellular model for conventional and supra-electroporation. Biochem Biophys Res Commun 349(2):643–653

    Article  Google Scholar 

  • Gowrishankar TR, Esser AT, Vasilkoski Z, Smith KC, Weaver JC (2006) Microdosimetry for conventional and supra-electroporation in cells with organelles. Biochem Biophys Res Commun a341(4):1266–1276

    Google Scholar 

  • Guo F, Yao C, Li C, Mi Y, Peng Q, Tang J (2014) In vivo evidences of nanosecond pulsed electric fields for melanoma malignancy treatment on tumor-bearing BALB/c nude mice. Technol Cancer Res Treat 13(4):337–344

    Article  Google Scholar 

  • Guo S, Jing Y, Burcus NI, Lassiter BP, Tanaz R, Heller R, Beebe SJ (2018) Nano-pulse stimulation induces potent immune responses, eradicating local breast cancer while reducing distant metastases. Int J Cancer 142(3):629–640

    Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  Google Scholar 

  • Kim C (2018) Understanding the nuances of microwave ablation for more accurate post-treatment assessment. Review Future Oncol 14(17):1755–1764

    Article  Google Scholar 

  • Koo GB, Morgan MJ, Lee DG, Kim WJ, Yoon JH, Koo JS, Kim SI, Kim SJ, Son MK, Hong SS, Levy JM, Pollyea DA, Jordan CT, Yan P, Frankhouser D, Nicolet D, Maharry K, Marcucci G, Choi KS, Cho H, Thorburn A, Kim YS (2015) Methylation-dependent loss of RIP3 expression in cancer represses programmed necrosis in response to chemotherapeutics. Cell Res 25:707–725

    Article  Google Scholar 

  • Lacroix M, Haibe-Kains B, Hennuy B, Laes JF, Lallemand F, Gonze I et al (2004) Gene regulation by phorbol 12-myristate 13-acetate in MCF-7 and MDA-MB-231, two breast cancer cell lines exhibiting highly different phenotypes. Oncol Rep 12:701–707

    Google Scholar 

  • Lassiter BP, Guo S, Beebe SJ (2018) Nano-pulse stimulation ablates orthotopic rat hepatocellular carcinoma and induces innate and adaptive memory Immune mechanisms that prevent recurrence. Cancers (Basel) 10(3):69

    Google Scholar 

  • Lazikani B, Banerji U, Workman P (2012) Combinatorial drug therapy for cancer in the post-genomic era. Nat Biotechnol 30(7):679–92. https://doi.org/10.1038/nbt.2284

  • Nuccitelli R, Pliquett U, Chen X, Ford W, James Swanson R, Beebe SJ, Kolb JF, Schoenbach KH (2006) Nanosecond pulsed electric fields cause melanomas to self-destruct. Biochem Biophys Res Commun 343:351–360

    Article  Google Scholar 

  • Nuccitelli R, Chen X, Pakhomov AG, Baldwin WH, Sheikh S, Pomicter JL, Ren W, Osgood C, Swanson RJ, Kolb JF, Beebe SJ, Schoenbach KH (2009) A new pulsed electric field therapy for melanoma disrupts the tumor's blood supply and causes complete remission without recurrence. Int J Cancer 125:438–445

    Google Scholar 

  • Nuccitelli R, Tran K, Sheikh S, Athos B, Kreis M, Nuccitelli P (2010) Optimized nanosecond pulsed electric field therapy can cause murine malignant melanomas to self-destruct with a single treatment. Int J Cancer 127:1727–1736

    Article  Google Scholar 

  • Nuccitelli R, Lui K, Kreis M, Athos B, Nuccitelli P (2013) Nanosecond pulsed electric field stimulation of reactive oxygen species in human pancreatic cancer cells is Ca(2+)-dependent. Biochem Biophys Res Commun 435(4):580–585

    Article  Google Scholar 

  • Nuccitelli R, Wood R, Kreis M, Athos B, Huynh J, Lui K, Nuccitelli P, Epstein EH Jr (2014) First-in-human trial of nanoelectroablation therapy for basal cell carcinoma: proof of method. Exp Dermatol 23:135–137. https://doi.org/10.1111/exd.12303

    Article  Google Scholar 

  • Pakhomova ON, Khorokhorina VA, Bowman AM, Rodaitė-Riševičienė R, Saulis G, Xiao S, Pakhomov AG (2012) Oxidative effects of nanosecond pulsed electric field exposure in cells and cell-free media. Arch Biochem Biophys 527(1):55–64

    Article  Google Scholar 

  • Pliquett U, Nuccitelli R (2014) Measurement and simulation of Joule heating during treatment of B-16 melanoma tumors in mice with nanosecond pulsed electric fields. Bioelectrochemistry 100:62–68

    Article  Google Scholar 

  • Rossi A, Pakhomova ON, Pakhomov AG, Weygandt S, Bulysheva AA, Murray LE, Mollica PA, Muratori C (2019) Mechanisms and immunogenicity of nsPEF-induced cell death in B16F10 melanoma tumors. Sci Rep 9:431

    Article  Google Scholar 

  • Roth J, Burwinkel F, van den Bos C, Goebeler M, Vollmer E, Sorg C (1993) MRP8 and MRP14, S-100-like proteins associated with myeloid differentiation, are translocated to plasma membrane and intermediate filaments in a calcium-dependent manner. Blood 82(6):18751883

    Google Scholar 

  • Schoenbach KH, Beebe SJ, Buescher ES (2001) Intracellular effect of ultrashort electrical pulses. Bioelectromagnetics 22(6):440–448

    Article  Google Scholar 

  • Schoenbach KH, Joshi RP, Beebe SJ, Baum CE (2009) A scaling law for membrane permeabilization with nanopulses. IEEE Trans Dielectr Electr Insul 16:1224–1235

    Article  Google Scholar 

  • Sersa G, Jarm T, Kotnik T, Coer A, Podkrajsek M, Sentjurc M, Miklavcic D, Kadivec M, Kranjc S, Secerov A, Cemazar M (2008) Vascular disrupting action of electroporation and electrochemotherapy with bleomycin in murine sarcoma. Br J Cancer 98:388–398

    Google Scholar 

  • Shultz LD, Schweitzer PA, Christianson SW et al (1995) Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice . J Immunol 154(1):180–191

    Google Scholar 

  • Shultz LD, Lyons BL, Burzenski LM et al (2005) Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol 174(10):6477–6489

    Article  Google Scholar 

  • Sonnenschein C, Soto AM (2014) Cancer and the Elusive Cancer Genes. Med Sci (paris) 30(6–7):688–692

    Article  Google Scholar 

  • Szewczyk M, Lechowski R, Zabielska K (2015) What do we know about canine osteosarcoma treatment? Review Vet Res Commun 39(1):61–67

    Article  Google Scholar 

  • Tang D, Kang R, Berghe TV, Vandenabeele P, Kroemer G (2019) The molecular machinery of regulated cell death. Cell Res 29(5):347–364

    Article  Google Scholar 

  • Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW (2013) Cancer genome landscapes. Science 339:1546–1558

    Article  Google Scholar 

  • Wang HG, Pathan N, Ethell IM, Krajewski S, Yamaguchi Y, Shibasaki F, McKeon F, Bobo T, Franke TF, Reed JC (1999) Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD. Science 284:339–343

    Article  Google Scholar 

  • Weinberg RA (2014) Coming full circle-from endless complexity to simplicity and back again. Cell 157:267–271. https://doi.org/10.1016/j.cell.2014.03.004

    Article  Google Scholar 

  • Wu S, Wang Y, Guo J, Chen Q, Zhang J, Fang J (2014) Nanosecond pulsed electric fields as a novel drug free therapy for breast cancer: an in vivo study. Cancer Lett 343(2):268–274

    Article  Google Scholar 

  • Yin D, Yang WG, Weissberg J, Goff CB, Chen W, Kuwayama Y, Leiter A, Xing H, Meixel A, Gaut D, Kirkbir F, Sawcer D, Vernier PT, Said JW, Gundersen MA, Koeffler HP (2012) Cutaneous papilloma and squamous cell carcinoma therapy utilizing nanosecond pulsed electric fields (nsPEF). PLoS ONE 7(8):e43891

    Article  Google Scholar 

  • Yin S, Chen X, Hu C, Zhang X, Hu Z, Yu J, Feng X, Jiang K, Ye S, Shen K, Xie H, Zhou L, James Swanson R, Zheng S (2014) Nanosecond pulsed electric field (nsPEF) treatment for hepatocellular carcinoma: a novel locoregional ablation decreasing lung metastasis. Cancer Lett 346(2):285–291

    Article  Google Scholar 

  • Yu SW, Andrabi SA, Wang H, Kim NS, Poirier GG, Dawson TM, Dawson VL (2006) Apoptosis-inducing factor mediates poly(ADP-ribose) (PAR) polymer-induced cell death. Proc Natl Acad Sci USA 103:18314–18319

    Article  Google Scholar 

  • Zhao B, Hemann MT, Lauffenburger DA (2014) Intratumor heterogeneity alters most effective drugs in designed combinations. Proc Natl Acad Sci U S A 111:10773–10778. https://doi.org/10.1073/pnas.1323934111

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Beebe .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Beebe, S.J. (2021). usEPs in Pre-clinical Cancer Treatment. In: Ultrashort Electric Pulse Effects in Biology and Medicine. Series in BioEngineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-5113-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5113-5_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5112-8

  • Online ISBN: 978-981-10-5113-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics