Skip to main content

Part of the book series: Series in BioEngineering ((SERBIOENG))

  • 510 Accesses

Abstract

The effects of intense electrical pulses on cell membranes have been studied extensively since the second half of the twentieth century, and have found multiple applications, ranging from bacterial decontamination to medical therapies. The first studies on this effect, named electroporation, rarely extended beyond microsecond pulse effects on cells. In the past two decades, however, the use of nanosecond and even shorter pulses gained interest, since electrical circuit models of biological cells indicated that not only the plasma membrane, but also the subcellular structures of mammalian cells could be affected by such extremely short pulses. The first experimental study published in 2001 confirmed this hypothesis. It was followed by a large number of publications which showed that such ultrashort, high electric field, but low electrical energy pulses, affect cell functions, such as programmed cell death, and a lower intensity, calcium mobilization from intracellular structures. This chapter, after a short introduction to electroporation, provides an overview of the progress of basic studies on nano- and picosecond pulse effects on cells, tissues, and organisms over the past two decades.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Akiyama H, Heller R (eds) (2017) Bioelectrics. Springer Nature, Japan

    Google Scholar 

  • Beebe SJ, Fox PM, Rec LJ, Somers K, Stark RH, Schoenbach KH (2002) Nanosecond pulsed electric field (nsPEF) effects on cells and tissues: apoptosis induction and tumor growth inhibition. IEEE Trans Plasma Sci 30:286–292

    Article  Google Scholar 

  • Beebe SJ, White J, Blackmore PF, Deng Y, Somers K, Schoenbach KH (2003) Diverse effects of nanosecond pulsed electric fields on cells and tissues. DNA Cell Biol 22:785–796

    Article  Google Scholar 

  • Beebe SJ, Fox PM, Rec LJ, Willis LK, Schoenbach KH (2003) Nanosecond, high intensity pulsed electric fields induce apoptosis in human cells. FASEB J 17:1493–1495

    Article  Google Scholar 

  • Beebe SJ, Blackmore PF, White J, Joshi RP, Schoenbach KH (2004) Nanosecond pulsed electric fields modulate cell functions through intracellular signal transduction mechanisms. Physiol Meas 25:1077–1093

    Article  Google Scholar 

  • Beebe SJ, Ford WE, Ren W, Chen X (2011) Pulse power ablation of melanoma with nanosecond pulsed electric fields. In: Morton R (ed) Tech croatia, treatment of metastatic melanoma, pp 231–268. ISBN 978-953-307-574-7

    Google Scholar 

  • Bennet WFD, Sapay N, Tieleman DP (2014) Atomistic simulations of pore formation and closure in lipid bilayers. Biophys J 106:210–219

    Article  Google Scholar 

  • Benz R, Zimmermann U (1980) Relaxation studies on cell membranes and lipid bilayers in the high electric field range. Bioelectrochem Bioenerg 7:723–739

    Article  Google Scholar 

  • Benz R, Zimmermann U (1980) Pulse-length dependence of the electrical breakdown of lipid bilayer membranes. Biochim Biophys Acta 597:637–642

    Article  Google Scholar 

  • Benz R, Zimmermann U (1981) The resealing process of lipid bilayers after reversible electrical breakdown. Biochim Biophys Acta 640:169–178

    Article  Google Scholar 

  • Buescher ES, Schoenbach KH (2003) The effects of submicrosecond, high intensity pulsed electric fields on living cells—intracellular electromanipulation. IEEE Trans Dielectr Elec Insul 10:788–794

    Article  Google Scholar 

  • Buescher ES, Smith RR, Schoenbach KH (2004) Submicrosecond intense pulsed electric field effects on intracellular free calcium: mechanisms and effects. IEEE Trans Plasma Sci 32:1563–1572

    Article  Google Scholar 

  • Camp JT, Jing Y, Zhuang J, Zhanrgen K, Beebe SJ, Song J, Joshi RP, Xiao S, Schoenbach KH (2012) Cell death induced by subnanosecond pulsed electric fields at elevated temperatures. IEEE Trans Plasma Sci 40(10):2334–2347

    Google Scholar 

  • Chen N, Schoenbach KH, Kolb JF, Swanson RJ, Garner AL, Yang J, Joshi RP, Beebe SJ (2004) Leukemic cell intracellular responses to nanosecond electric fields. Biochem Biophys Res Commun 317:421–427

    Google Scholar 

  • Chen N, Garner AL, Chen G, Jing Y, Deng Y, Swanson RJ, Kolb JF, Beebe SJ, Joshi RP, Schoenbach KH (2007) Nanosecond electric pulses penetrate the nucleus and enhance speckle formation. Biochem Biophys Res Commun 364:220–225

    Article  Google Scholar 

  • Chen R, Sain NM, Harlow KT, Chen YJ, Shires PK, Heller R, Beebe SJ (2014) A protective effect after clearance of orthotopic rat hepatocellular carcinoma by nanosecond pulsed electric fields. Eur J Cancer 50:2705–2713

    Article  Google Scholar 

  • Chopinet L, Rols MP (2015) Nanosecond electric pulses: a mini-review of the present state of the art. Bioelectrochemistry 103:2–6

    Article  Google Scholar 

  • Cole KS (1937) Electric impedance of marine egg membranes. Trans Faraday Soc 23:966–972

    Article  Google Scholar 

  • Croce RP, De Vita A, Pierro V, Pinto IM (2010) A thermal model for pulsed EM field exposure effects in cells at nonthermal levels. IEEE Trans Plasma Sci 38:149–155

    Article  Google Scholar 

  • Daud AI, DeConti RC, Andrews S, Urbas P, Riker AI, Sondak VK, Munster PN, Sullivan DM, Ugen KE, Messina JL, Heller R (2008) Phase I trial of interleukin-12 plasmid electroporation in patients with metastatic melanoma. J Clin Oncol 26:5896–5903

    Article  Google Scholar 

  • Davalos RV, Mir L, Rubinski B (2005) Tissue ablation with irreversible electroporation. Ann Biomed Eng 33:223–231

    Google Scholar 

  • Deng J, Schoenbach KH, Buescher ES, Hair PS, Fox PM, Beebe SJ (2003) The effects of intense submicrosecond electrical pulses on cells. Biophys J 84:2709–2714

    Article  Google Scholar 

  • Dioscorides (512) Dioscorides, pedanius, of anazarbos: the greek herbal of dioscorides, illustrated by a Byzantine AD 512. Translated by John Goodyer AD 1655. Hafner, London 1968, Facsimile of 1934 edition

    Google Scholar 

  • Eppich HM, Foxall R, Gaynor K, Dombkowski D, Miura N, Cheng T, Silva-Arrieta S, Evans RH, Mangano JA, Preffer FI, Scadden DT (2000) Pulsed electric fields for selection of hematopoietic cells and depletion of tumor cell contaminants. Nat Biotechnol 18:882–887

    Article  Google Scholar 

  • Foster KR, Schwan HP (1996) Dielectric properties of tissues. In: Polk C, Postow E (eds) Handbook of biological effects of electromagnetic fields. CRC Press, pp 25–102

    Google Scholar 

  • Frandsen SK, Gissel H, Hojman P, Tramm T, Eriksen J, Gehl J (2012) Direct therapeutic applications of calcium electroporation to effectively induce tumor necrosis. Cancer Res 72:1336–1341

    Article  Google Scholar 

  • Frey W, White JA, Price RO, Blackmore PF, Joshi RP, Nuccitelli R, Beebe SJ, Schoenbach KH, Kolb JF (2006) Plasma membrane voltage changes during nanosecond pulsed electric field exposure. Biophys J 90:3608–3615

    Article  Google Scholar 

  • Frey W, Gusbeth C, Sakugawa T, Sack M, Mueller G, Sigler J, Vorobiev E, Lebovka N, Alvarez I, Raso J, Heller LC, Malik MA, Eing C, Teissie J (2017) Environmental applications, food and biomass processing by pulsed electric fields. In: Akiyama H, Heller R (eds) “Bioelectrics”, chap 6. Springer Nature, Japan, pp 389–476

    Google Scholar 

  • Gabriel B, Teissie J (1997) Direct observations in the millisecond time range of fluorescent molecular asymmetrical interaction with the electropermeabilized cell membrane. Biophys J 73:2630–2637

    Article  Google Scholar 

  • Galluzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, Dawson TM, Dawson VL, El-Deiry WS, Fulda S, Gottlieb E, Green DR, Hengartner MO, Kepp O, Knight RA, Kumar S, Lipton SA, Lu X, Madeo F, Malorni W, Mehlen P, Nunez G, Peter ME, Piacentini M, Rubinsztein DC, Shi Y, Simon HU, Vandenabeele P, White E, Yuan J, Zhivotovsky B, Melino G, Kroemer G (2012) Molecular definitions of cell death subroutines: recommendations of the nomenclature committee on cell death. Cell Death Differ 19:107–120

    Article  Google Scholar 

  • Ghazala A, Schoenbach KH (2000) Biofouling prevention with pulsed electric fields. IEEE Trans Plasma Sci 28:115–121

    Article  Google Scholar 

  • Glaser RW, Leikin SL, Chernomordik LV, Pastushenko VF, Sokirko AI (1988) Reversible electrical breakdown of lipid bilayers: formation and evaluation of pores. Biochim Biophys Acta 940:275–287

    Article  Google Scholar 

  • Gowrishankar TR, Weaver JC (2003) An approach to electrical modeling of single and multiple cells. Proc Nat Acad Sci 100:32033208

    Article  Google Scholar 

  • Gowrishankar TR, Esser AT, Vasilkoski Z, Smith KC, Weaver JC (2006) Microdosimetry for conventional and supra-electroporation in cells with organelles. Biochem Biophys Res Commun 341:1266–1276

    Article  Google Scholar 

  • Guo S, Jing Y, Burcus NI, Lassiter BP, Tanaz R, Heller R, Beebe SJ (2017) Nano-pulse stimulation induces potent immune responses, eradicating local breast cancer while reducing distant metastases. Int J Cancer. https://doi.org/10.1002/ijc.31071

    Article  Google Scholar 

  • Hair PS, Schoenbach KH, Buescher ES (2003) Sub-microsecond, Intense pulsed electric field applications to cells show specificity of effects. J Bioelectrochem 61:65–72

    Article  Google Scholar 

  • Hargrave B, Varghese F, Barabutis N, Catravas J, Zemlin CW (2016) Nanosecond pulsed platelet-rich plasma (nsPRP) improves mechanical and electrical cardiac function following myocardial reperfusion injury. Physiol Rep 4:12710

    Article  Google Scholar 

  • Heeren T, Camp JT, Kolb JF, Schoenbach KH, Katsuki S, Akiyama H (2007) 250 kV subnanosecond pulse generator with adjustable pulsewidth. IEEE Trans Dielectric Electric Insul 14:884–888

    Google Scholar 

  • Heller R, Jaroszeski M, Atkin A, Moradpour D, Gilbert R, Wands J (1996) Nicolau, C: in vivo gene electroinjection and expression in rat liver. FEBS Lett 389:225–228

    Article  Google Scholar 

  • Heller R, Jaroszeski M, Perrott R, Messina J, Gilbert R (1997) Effective treatment of B16 melanoma by direct delivery of bleomycin using electrochemotherapy. Melanoma Res 7:10–18

    Article  Google Scholar 

  • Hu Q, Viswanadham S, Joshi RP, Schoenbach KH, Beebe SJ, Blackmore PF (2005) Simulations of transient membrane behavior in cells subjected to a high-intensity ultrashort electrical pulse. Phys Rev E 71:031914-1–31919

    Article  Google Scholar 

  • Hu Q, Joshi RP, Schoenbach KH (2005a) Simulations of nanopore formation and phosphatidylserine externalization in lipid membranes subjected to a high-intensity, ultrashort electric pulse. Phys Rev E 72:031902-1–031902-10

    Google Scholar 

  • Jiang C, Davalos RV, Bischof JC (2015) A review of basic to clinical studies of irreversible electroporation therapy. IEEE Trans Biomed Eng 62:4–20

    Article  Google Scholar 

  • Joshi RP, Hu Q, Schoenbach KH (2004) Modeling studies of cell response to ultrashort high-intensity electric fields—implications for intracellular manipulation. IEEE Trans Plasma Sci 32:1677–1686

    Article  Google Scholar 

  • Kellaway P (1946) The part played by electric fish in the early history of bioelectricity and electrotherapy. Bull Hist Med 20:112

    Google Scholar 

  • Kinosita K, Tsong TY (1977) Voltage-induced pore formation and hemolysis of human Eerythrocytes. Biochim Biophys Acta 471:227–242

    Article  Google Scholar 

  • Kloesgen B, Reichle C, Kohlsmann S, Kramer KD (1996) Dielectric spectroscopy as a sensor of membrane headgroup mobility and hydration. Biophys J 71:3251–3260

    Article  Google Scholar 

  • Kolb JF, Kono S, Schoenbach KH (2006) Nanosecond pulse electric field generators for the study of subcellular effects. Bioelectromagnetics 27:172–187

    Article  Google Scholar 

  • Kotnik T, Miklavcic D (2000) Theoretical evaluation of the distributed power dissipation in biologicalcells exposed to electric fields. Bioelectromagnetics 21:385–394

    Google Scholar 

  • Largus K (1528) Scribonius: De compositionibus medicamentorum. Liber unius, antehac nusquarn excusus: Joanne Ruellio, Paris

    Google Scholar 

  • Lehmann J, Pollet D, Peker S, Steinkraus V, Hoppe U (1998) Kinetics of DNA strand breaks and protection by antioxidants in UVA- or UVB-irradiated HaCaT keratinocytes using the single cell electrophoresis assay. Mutat Res 407:97–108

    Article  Google Scholar 

  • Leibowitz JO (1957) Electroshock therapy in Ibn-Sina’s Canon. J Hist Med 12:71

    Google Scholar 

  • Mir LM, Belehradek M, Domenge C, Orlowski S, Poddevin B, Belehradek J Jr, Schwaab G, Luboinski B, Paoletti C (1991) Electrochemotherapy, a new antitumor treatment: first clinical trial. C R Acad Sci III 313:613–618

    Google Scholar 

  • Napotnik TB, Rebersek M, Kotnik T, Lebrasseur E, Cabodevila G, Miklavcic D (2010) Electropermeabilization of endocytic vesicles in B16 F1 mouse melanoma cells. Med Biol Eng Comput 48:407–413

    Article  Google Scholar 

  • Napotnik TB, Rebersec M, Vernier PT, Mali B, Miklavcic D (2016) Effects of high voltage electric pulses on eukaryotic cell (in vitro): a systematic review. Bioelectrochemistry 110:1–12

    Article  Google Scholar 

  • Neumann E, Rosenheck K (1972) Permeability changes induced by electric impulses in vesicular membranes. J Membr Biol 10:279–290

    Article  Google Scholar 

  • Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 1:841–845

    Article  Google Scholar 

  • Nuccitelli R, Pliquett U, Chen X, Ford W, Swanson RJ, Beebe SJ, Kolb JF, Schoenbach KH (2006) Nanosecond pulsed electric fields cause melanomas to self-destruct. Biochem Biophys Re Commun 343:351–360

    Article  Google Scholar 

  • Nuccitelli R, Tran K, Sheikh S, Athos B, Kreis M, Nuccitelli P (2010) Optimized nanosecond pulsed electric field therapy can cause murine malignant melanomas to self-destruct with a single treatment. Int J Cancer 127:1727–1736

    Article  Google Scholar 

  • Nuccitelli R, Tran K, Lui K, Huynh J, Athos B, Kreis M, Nuccitelli P, De Fabio EC (2012) Non-thermal nanoelectroablation of UV-induced murine melanomas stimulates an immune response. Pigment Cell Melanoma Res 25:618–629

    Article  Google Scholar 

  • Nuccitelli R, Berridge JC, Mallon Z, Kreis M, Athos B, Nuccitelli P (2015) Nanoelectroablation of murine tumors triggers a CD8-dependent inhibition of secondary tumor growth. PLoS One 10(7):e0134364

    Google Scholar 

  • Okino M, Mohri H (1987) Effects of a high-voltage electrical impulse and an anticancer drug on in vivo growing tumors. Jap J Cancer Res 78:1319–1321

    Google Scholar 

  • Pakhomov AG, Shevin R, White J, Kolb JF, Pakhomova ON, Joshi RP, Schoenbach KH (2007) Membrane permeabilization and cell damage by ultrashort electric field shocks. Arch Biochem Biophys 465:109–118

    Article  Google Scholar 

  • Pakhomov AG, Bowman AM, Ibey BI, Andre FM, Pakhomova ON, Schoenbach KH (2009) Lipid nanopores can form a stable, ion channel-like conduction pathway in cell membrane. Biochem Biophys Commun 385:181–186

    Article  Google Scholar 

  • Pakhomov AG, Miklavcic D, Markov MS (eds) (2010) Advanced electroporation techniques in biology and medicine. CRC Press, Taylor and Francis, Bota Racon, FL

    Google Scholar 

  • Pakhomov AG, Semenov I, Xiao S, Pakhomova ON, Gregory B, Schoenbach KH, Ullery JC, Beier HT, Rajulapati SR, Ibey BL (2014) Cancellation of cellular responses to nanoelectroporation by reversing the stimulus polarity. Cell Mol Life Sci 71:4431–4441

    Article  Google Scholar 

  • Petrella R, Schoenbach KH, Xiao S (2017) A dielectric rod antenna driven by pulsed power system for stimulating biological tissues. IEEE Trans Dielectric Electric Insul 24:2157–2163

    Article  Google Scholar 

  • Pliquett U, Nuccitelli R (2014) Measurement and simulation of Joule heating during treatment of B-16 melanoma tumors in mice with nanosecond pulsed electric fields. Bioelectrochemistry 100:62–68

    Article  Google Scholar 

  • Rems E, Tarek M, Casciola M, Miklavcic D (2016) Properties of lipid electropores II: comparison of continuum-level modeling of pore conductance to molecular dynamics simulations. Bioelectrochemistry 112:112–124

    Article  Google Scholar 

  • Schoenbach KH, Greene L (2015) Method and device for treatment of conditions aggravated by amyloid fibrils. US Patent, No. 8,948,878 B2

    Google Scholar 

  • Schoenbach KH (2010) Bioelectric effects of intense nanosecond pulses. In: Pakhomov AG, Miklavcic D, Markov MS (eds) Advanced electroporation techniques in biology and medicine. CRC Press, Taylor and Francis Group, Bota Racon, FL, pp 19–49

    Google Scholar 

  • Schoenbach KH (2018) From the basic science of biological effects of ultrashort electrical pulses to medical therapies. Bioelectromagnetics 39(4):257–276

    Article  Google Scholar 

  • Schoenbach KH, Xiao S (2016) Nanosecond pulses and beyond—towards antenna applications. In: Jarm T, Kramar P (eds) 1st world congress on electroporation and pulsed electric fields in biology, medicine and food and environmental technologies. IFMBE Proceedings, vol 53. Springer, Singapore

    Google Scholar 

  • Schoenbach KH, Peterkin FE, Alden RW, Beebe SJ (1997a) The effect of pulsed electric fields on biological cells: experiments and applications. Trans Plasma Sci 25:284–292

    Article  Google Scholar 

  • Schoenbach KH, Abou-Ghazala A, Vithoulkas T, Alden RW, Turner R, Beebe SJ (1997b) The effect of pulsed electric fields on biological cells. In: Cooperstein C, Vitkovitsky I (eds) Proceedings of 11th IEEE international pulsed power conference, Baltimore, ML, pp 73–78

    Google Scholar 

  • Schoenbach KH, Beebe JS, Buescher ES (1999) Biological effects of high power, microsecond and submicrosecond electrical pulses. ElectroMed99, Norfolk, VA, Symposium Record Abstracts, pp 35

    Google Scholar 

  • Schoenbach KH, Beebe SJ, Buescher ES (2001) Intracellular effect of ultrashort electrical pulses. Bioelectromagnetics 22:440–448

    Article  Google Scholar 

  • Schoenbach KH, Katsuki S, Stark RH, Beebe S, Buescher S (2002) Bioelectrics—new applications for pulsed power technology. IEEE Trans Plasma Sci 30:293–300

    Article  Google Scholar 

  • Schoenbach KH, Joshi RP, Kolb JF, Chen N, Stacey M, Blackmore PF, Buescher ES, Beebe SJ (2004) Ultrahort electrical pulses open a new gateway into biological cells. Proc IEEE 92:1122–1137

    Article  Google Scholar 

  • Schoenbach KH, Nuccitelli R, Beebe SJ (2006) ZAP: Extreme voltage could be a surprisingly delicate tool in the fight against cancer. IEEE Spectr 43:20–26

    Article  Google Scholar 

  • Schoenbach KH, Hargrave B, Joshi RP, Kolb JF, Nuccitelli R, Osgood C, Pakhomov A, Stacey M, Swanson RJ, White JA, Xiao S, Zhang J, Beebe SJ, Blackmore PF, Buescher ES (2007) Bioelectric effects of intense nanosecond pulses. IEEE Dielectric Electric Insul 14:1088–1109

    Article  Google Scholar 

  • Schoenbach KH, Xiao S, Joshi RP, Camp JT, Heeren T, Kolb JF, Beebe SJ (2008) The effect of intense subnanosecond electrical pulses on biological cells. IEEE Trans Plasma Sci 36:414–424

    Article  Google Scholar 

  • Schoenbach KH, Baum CE, Joshi RP, Beebe SJ (2009) A scaling law for membrane permeabilization with nanopulses. IEEE Trans Dielectric Electric Insul 16:1224–1235

    Article  Google Scholar 

  • Semenov I, Xiao S, Pakhomova ON, Pakhomov AG (2013) Recruitment of the intracellular Ca2+ by ultrashort electric stimuli: the impact of pulse duration. Cell Calcium 54:145–150

    Article  Google Scholar 

  • Semenov I, Xiao S, Kang D, Schoenbach KH, Pakhomov A (2015) Cell stimulation and calcium mobilization by picosecond electrical pulses. Bioelectrochemistry 105:65–71

    Article  Google Scholar 

  • Sersa G, Cemazar M, Miklavcic D (1995) Antitumor effectiveness of electrochemotherapy with cis-diamminedichloroplatinum(II) in mice. Cancer Res 55:3450–3455

    Google Scholar 

  • Son RS, Smith KC, Gowrishankar TR, Vernier PT, Weaver JC (2014) Basic features of a cell electroporation model: illustrative behavior for two very different pulses. J Membrane Biol 247:1209–1228

    Article  Google Scholar 

  • Stacey M, Stickley J, Fox P, Statler V, Schoenbach K, Beebe SJ, Buescher S (2003) Differential effects in cells exposed to ultra-short, high intensity electric fields: cell survival, DNA damage, and cell cycle analysis. Mutat Res 542:65–75

    Article  Google Scholar 

  • Staempfli R (1958) Reversable breakdown of excitable membrane of a Ranvier node. Ann Acad Bras Ciencias 30:57

    Google Scholar 

  • Steelman ZA, Tolstykh GP, Beier HT, Ibey BL (2016) Cellular response to high pulse repetition rate nanosecond pulses varies with fluorescent marker identity. BBRC 478:1261–1267

    Google Scholar 

  • Stillings D (2004) The theology of electricity: electricity, alchemy, and the unconscious. In: Rosch PJ, Markov MS (eds) Bioelectromagnetic medicine. Marcel decker Inc., New York, pp 61–75

    Google Scholar 

  • Sugar IP, Neumann E (1984) Stochastic model for electric field-induced membrane pores electroporation. Biophys Chem 19:211–225

    Article  Google Scholar 

  • Tarek M, Delemotte L (2010) Electroporation of lipid membranes: insights from molecular dynamics simulations. In: Pakhomov A, Miklavcic D, Markov MS (eds) Chapter II-7 Advanced electroporation techniques in biology and medicine. CRC Press, Taylor and Francis Group, Bota Racon, FL

    Google Scholar 

  • Tekle E, Oubrahim H, Dzekunov SM, Kolb JF, Schoenbach KH, Chock PB (2005) Selective field effects on intracellular vacuoles and vesicle membranes with nanosecond electric pulses. Biophys J 89:274–284

    Article  Google Scholar 

  • Tieleman DP, Leontiadou H, Mark AE, Marrink SJ (2003) Simulation of pore formation in lipid bilayers by mechanical stress and electric fields. J Am Chem Soc 125:6382–6383

    Article  Google Scholar 

  • Titomirov AV, Sukharev S, Kistanova E (1991) In vivo electroporation and stable transformation of skin cells of newborn mice by plasmid DNA. Biochim Biophys Acta 1088:131–134

    Article  Google Scholar 

  • Vasilkoski Z, Esser AT, Gowrishankar TR, Weaver JC (2006) Membrane electroporation: the absolute rate equation and nanosecond time scale pore creation. Phys Rev E 74:021904–1–21912

    Google Scholar 

  • Vernier PT (2010) Nanoscale restructuring of lipid bilayers in nanosecond electric fields. In: Pakhomov AG, Miklavcic D, Markov MS, (eds) Chapter II- 8 in advanced electroporation techniques in biology and medicine. CRC Press, Taylor and Francis Group, Bota Racon, FL

    Google Scholar 

  • Vernier PT, Sun Y, Marcu L, Salemi S, Craft CM, Gundersen MA (2003) Calcium bursts induced by nanosecond electrical pulses. Biochem Biophys Commun 310:286–295

    Article  Google Scholar 

  • Vernier PT, Li A, Marcu L, Craft CM, Gundersen MA (2003) Ultrashort pulsed electric fields induce membrane phospholipid translocation and caspase activation: differential sensitivities of Jurkat T lymphoblasts and rat glioma C6 cells. IEEE Trans Dielectric Electric Insul 10:795–803

    Article  Google Scholar 

  • Vernier PT, Ziegler MJ, Sun Y, Gundersen MA, Tielemann DP (2006) Nanopore-facilitated, voltage-driven translocation in lipid bilayers—in cells and in silico. Phys Biol 3:233–247

    Article  Google Scholar 

  • Weaver JC, Powell KT, Mintzer RA, Sloan SR, Ling H (1984) The diffuse permeability of bilayer membranes: the contribution of transient aqueous pores. Bioelectrochem Bioenerg 12:405–412

    Article  Google Scholar 

  • Wickland CA (1968) Thirty years among the dead. Spiritual Press, London

    Google Scholar 

  • Wong TK, Neumann E (1982) Electric field mediated gene transfer. Biophys Biochem Res Commun 107:548–587

    Article  Google Scholar 

  • Xiao S, Altunc S, Kumar P, Baum CE, Schoenbach KH (2010) A reflector antenna for focusing in the near field. IEEE Antennas Wirel Propag Lett 9:12–15

    Article  Google Scholar 

  • Xiao S, Guo S, Vasyl N, Heller R, Schoenbach KH (2011) Subnanosecond electrical pulses cause membrane permeabilization and cell death. IEEE Trans Biomed Eng 58:1239–1245

    Article  Google Scholar 

  • Xiao S, Pakhomov A, Guo F, Polisetty S, Schoenbach KH (2013) Neurostimulation using subnanosecond electrical pulses. SPIE Proc 8585:0M

    Google Scholar 

  • Xiao S, Zou X, Huynh K, Yamada R, Petrella R, Hani M, Beebe S (2020) A high power dielectric biconical antenna for treatment of subcutaneous targets. Bioelectromagnetics 41:413–424

    Article  Google Scholar 

  • Xie F, Varghese F, Pakhomov AG, Semenov I, Xiao S, Philpott J, Zemlin C (2015) Ablation of myocardial tissue with nanosecond pulsed electric fields. PLoS ONE 10:e0144833

    Article  Google Scholar 

  • Zhang J, Blackmore PF, Hargrave BY, Xiao S, Beebe SJ, Schoenbach KH (2008) Nanosecond pulse electric field (nanopulse): A novel non-ligand agonist for platelet activation. Arch Biochem Biophys 471:240–248

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl H. Schoenbach .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schoenbach, K.H. (2021). Introduction. In: Ultrashort Electric Pulse Effects in Biology and Medicine. Series in BioEngineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-5113-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5113-5_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5112-8

  • Online ISBN: 978-981-10-5113-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics