Skip to main content

Classification of Congenital Deformities of Hands and Upper Limbs and Selection of Surgery Timing

  • Chapter
  • First Online:
Congenital Deformities of the Hand and Upper Limb

Part of the book series: Plastic and Reconstructive Surgery ((PRS))

  • 929 Accesses

Abstract

The congenital deformities of the upper limb are complicated, so establishment of a complete classification system for congenital deformities of the upper limbs is conducive to the understanding of anomaly formation, the design of clinical treatment planning, the study on clinical treatment and etiological factors, and the dissemination and academic exchange of knowledge on hand and upper limb congenital deformities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Swanson AB. A classification for congenital malformations of the hand. Acad Med Bull New Jersey. 1964;10:166–9.

    Google Scholar 

  2. Kay H. A proposed international terminology for the classification of congenital limb deficiencies. Orthotics Prosthetics. 1974;28:33–48.

    Google Scholar 

  3. Ogino T. Modified IFSSH classification. J Japan Soc Surg Hand. 2000;17:353–65.

    Google Scholar 

  4. De Smet L, Matton G, Monstrey S, et al. Application of the IFSSH(3)-classification for congenital Deformitis of the hand; results and problems. Acta Orthop Belg. 1997;63(3):182–8.

    PubMed  Google Scholar 

  5. Flatt AE. The care of congenital hand anomalies. 2nd ed. St. Louis: Quality Medical Publishing; 1994. p. 366–410.

    Google Scholar 

  6. Knight SL, SPJ K. Classification of congenital anomalies. In: Gupta A, SPJ K, Scheker LR, editors. The growing hand. London: Harcourt; 2000. p. 125–35.

    Google Scholar 

  7. Luijsterburg AJ, Sonneveld GJ, Vermeij-Keers C, Hovius SE. Recording congenital differences of the upper limb. J Hand Surg. 2003;28B:205–14.

    Article  Google Scholar 

  8. Manske PR, Oberg KC. Classification and developmental biology of congenital anomalies of the hand and upper extremity. J Bone Joint Surg. 2009;91A(Suppl 4):3–18.

    Article  Google Scholar 

  9. Ogino T, Minami A, Fukuda K, Kato H. Congenital anomalies of the upper limb among the Japanese in Sapporo. J Hand Surg. 1986;11B:364–71.

    Article  Google Scholar 

  10. Tonkin MA. Description of congenital hand anomalies: a personal view. J Hand Surg. 2006;31B:489–97.

    Article  Google Scholar 

  11. Upton J. The hand and upper limb: congenital anomalies. In: Mathes SJ, editor. Plastic surgery. 2nd ed. Philadephia, PA: Saunders Elsevier; 2006. p. 32–5.

    Google Scholar 

  12. Niemann S, Zhao C, Pascu F, Stahl U, Aulepp U, Niswander L, et al. Homozygous WNT3 mutation causes tetra-amelia in a large consanguineous family. Am J Hum Genet. 2004;74:558–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sekine K, Ohuchi H, Fujiwara M, Yamasaki M, Yoshizawa T, Sato T, et al. Fgf10 is essential for limb and lung formation. Nat Genet. 1999;21:138–41.

    Article  CAS  PubMed  Google Scholar 

  14. Basson CT, Bachinsky DR, Lin RC, Levi T, Elkins JA, Soults J, et al. Mutations in human TBX5 [corrected] cause limb and cardiac malformation in Holt-Oram syndrome. Nat Genet. 1997;15:30–5.

    Article  CAS  PubMed  Google Scholar 

  15. Laufer E, Dahn R, Orozco OE, Yeo CY, Pisenti J, Henrique D, et al. Expression of radical fringe in limb-bud ectoderm regulates apical ectodermal ridge formation. Nature. 1997;386:366–73.

    Article  CAS  PubMed  Google Scholar 

  16. Zakany J, Zacchetti G, Duboule D. Interactions between HOXD and Gli3 genes control the limb apical ectodermal ridge via Fgf10. Dev Biol. 2007;3061:883–93.

    Article  Google Scholar 

  17. Rodriguez-Esteban C, Schwabe JWR, De La Pena J, Foys B, Eshelman B, Izpisua-Belmonte JC. Radical fringe positions the apical ectodermal ridge at the dorsoventral boundary of the vertebrate limb. Nature. 1997;386:360–5.

    Article  CAS  PubMed  Google Scholar 

  18. Boehm B, Westerberg H, Lesnicar-Pucko G, Raja S, Rautschka M, Cotterell J, et al. The role of spatially controlled cell proliferation in limb bud morphogenesis. PLoS Biol. 2010;8:e1000420.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Barrow JR, Thomas KR, Boussadia-Zahui O, Moore R, Kemler R, Capecchi MR, et al. Ectodermal Wnt3/beta-catenin signaling is required for the establishment and maintenance of the apical ectodermal ridge. Genes Dev. 2003;17:394–409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kawakami Y, Capdevila J, Buscher D, Itoh T, Rodriguez EC, Izpisua Belmonte JC. WNT signals control FGF-dependent limb initiation and AER induction in the chick embryo. Cell. 2001;104:891–900.

    Article  CAS  PubMed  Google Scholar 

  21. Niswander L, Jeffrey S, Martin GR, Tickle C. A positive feedback loop coordinates growth and patterning in the vertebrate limb. Nature. 1994;371:609–12.

    Article  CAS  PubMed  Google Scholar 

  22. Laufer E, Nelson CE, Johnson RL, Morgan BA, Tabin C. Sonic hedgehog and Fgf-4 act through a signaling cascade and feedback loop to integrate growth and patterning of the developing limb bud. Cell. 1994;79:993–1003.

    Article  CAS  PubMed  Google Scholar 

  23. Sun X, Lewandoski M, Meyers EN, Liu YH, Maxson RE Jr, Martin GR. Conditional inactivation of Fgf4 reveals complexity of signaling during limb bud development. Nat Genet. 2000;25:83–6.

    Article  CAS  PubMed  Google Scholar 

  24. Riddle RD, Ensini M, Nelson C, Tsuchida T, Jessell TM, Tabin C. Induction of the LIM homeobox gene Lmx1 by WNT7a establishes dorsoventral pattern in the vertebrate limb. Cell. 1995;83:631–40.

    Article  CAS  PubMed  Google Scholar 

  25. Vogel A, Rodriguez C, Warnken W, Izpisua Belmonte JC. Dorsal cell fate specified by chick Lmx1 during vertebrate limb development. Nature. 1995;378:716–20.

    Article  CAS  PubMed  Google Scholar 

  26. Woods CG, Stricker S, Seemann P, Stern R, Cox J, Sherridan E, et al. Mutations in WNT7A cause a range of limb malformations, including Fuhrmann syndrome and Al-Awadi/Raas-Rothschild/ Schinzel phocomelia syndrome. Am J Hum Genet. 2006;79:402–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yang Y, Niswander L. Interaction between the signaling molecules WNT7a and SHH during vertebrate limb development: dorsal signals regulate anteroposterior patterning. Cell. 1995;80:939–47.

    Article  CAS  PubMed  Google Scholar 

  28. Mackie EJ, Ahmed YA, Tatarczuch L, Chen KS, Mirams M. Endochondral ossification: how cartilage is converted into bone in the developing skeleton. Int J Biochem Cell Biol. 2008;40:46–62.

    Article  CAS  PubMed  Google Scholar 

  29. Clement-Jones M, Schiller S, Rao E, Blaschke RJ, Zuniga A, Zeller R, et al. The short stature homeobox gene SHOX is involved in skeletal abnormalities in Turner syndrome. Hum Mol Genet. 2000;9:695–702.

    Article  CAS  PubMed  Google Scholar 

  30. Cobb J, Dierich A, Huss-Garcia Y, Duboule D. A mouse model for human short-stature syndromes identifies Shox2 as an upstream regulator of Runx2 during long-bone development. Proc Natl Acad Sci USA. 2006;103:4511–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Summerbell D. A quantitative analysis of the effect of excision of the AER from the chick limb-bud. J Embryol Exp Morphol. 1974;32:651–60.

    CAS  PubMed  Google Scholar 

  32. Yu K, Ornitz DM. FGF signaling regulates mesenchymal differentiation and skeletal patterning along the limb bud proximodistal axis. Development. 2008;135:483–91.

    Article  CAS  PubMed  Google Scholar 

  33. Lu P, Yu Y, Perdue Y, Werb Z. The apical ectodermal ridge is a timer for generating distal limb progenitors. Development. 2008;135:1395–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Summerbell D, Lewis JH. Time, place and positional value in the chick limb-bud. J Embryol Exp Morphol. 1975;33:621–43.

    CAS  PubMed  Google Scholar 

  35. Winkel A, Stricker S, Tylzanowski P, Seiffart V, Mundlos S, Gross G, et al. Wnt-ligand-dependent interaction of TAK1 (TGF-betaactivated kinase-1) with the receptor tyrosine kinase Ror2 modulates canonical Wnt-signalling. Cell Signal. 2008;20:2134–44.

    Article  CAS  PubMed  Google Scholar 

  36. Galloway JL, Delgado I, Ros MA, Tabin CJ. A reevaluation of X-irradiation-induced phocomelia and proximodistal limb patterning. Nature. 2009;460:400–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Mariani FV, Ahn CP, Martin GR. Genetic evidence that FGFs have an instructive role in limb proximal-distal patterning. Nature. 2008;453:401–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tabin C, Wolpert L. Rethinking the proximodistal axis of the vertebrate limb in the molecular era. Genes Dev. 2007;21:1433–42.

    Article  CAS  PubMed  Google Scholar 

  39. Britto JA, Chan JC, Evans RD, Hayward RD, Jones BM. Differential expression of fibroblast growth factor receptors in human digital development suggests common pathogenesis in complex acrosyndactyly and craniosynostosis. Plast Reconstr Surg. 2001;107:1331–8.

    Article  CAS  PubMed  Google Scholar 

  40. Towers M, Mahood R, Yin Y, Tickle C. Integration of growth and specification in chick wing digit-patterning. Nature. 2008;452:882–6.

    Article  CAS  PubMed  Google Scholar 

  41. Zhu J, Nakamura E, Nguyen MT, Bao X, Akiyama H, Mackem S. Uncoupling sonic hedgehog control of pattern and expansion of the developing limb bud. Dev Cell. 2008;14:624–32.

    Article  CAS  PubMed  Google Scholar 

  42. Tytherleigh-Strong G, Hooper G. The classification of phocomelia. J Hand Surg. 2003;28B:215–7.

    Article  Google Scholar 

  43. Goldfarb CA, Manske PR, Busa R, Mills J, Carter P, Ezaki M. Upper-extremity phocomelia reexamined: a longitudinal dysplasia. J Bone Joint Surg. 2005;87A:2639–48.

    Google Scholar 

  44. Cygan JA, Johnson RL, McMahon AP. Novel regulatory interactions revealed by studies of murine limb pattern in Wnt-7a and En-1 mutants. Development. 1997;124:5021–32.

    CAS  PubMed  Google Scholar 

  45. Chen H, Lun Y, Ovchinnikov D, Kokubo H, Oberg KC, Pepicelli CV, et al. Limb and kidney defects in Lmx1b mutant mice suggest an involvement of LMX1B in human nail patella syndrome. Nat Genet. 1998;19:51–5.

    Article  PubMed  Google Scholar 

  46. Dlugaszewska B, Silahtaroglu A, Menzel C, Kubart S, Cohen M, Mundlos S, et al. Breakpoints around the HOXD cluster result in various limb malformations. J Med Genet. 2006;43:111–8.

    Article  CAS  PubMed  Google Scholar 

  47. Knezevic V, De SR, Schughart K, Huffstadt U, Chiang C, Mahon KA, et al. Hoxd-12 differentially affects preaxial and postaxial chondrogenic branches in the limb and regulates sonic hedgehog in a positive feedback loop. Development. 1997;124:4523–36.

    CAS  PubMed  Google Scholar 

  48. Zakany J, Kmita M, Duboule D. A dual role for Hox genes in limb anterior-posterior asymmetry. Science. 2004;304:1669–72.

    Article  CAS  PubMed  Google Scholar 

  49. Dahn RD, Fallon JF. Interdigital regulation of digit identity and homeotic transformation by modulated BMP signaling. Science. 2000;289:438–41.

    Article  CAS  PubMed  Google Scholar 

  50. Weatherbee SD, Behringer RR, Rasweiler JJ, Niswander LA. Interdigital webbing retention in bat wings illustrates genetic changes underlying amniote limb diversification. Proc Natl Acad Sci USA. 2006;103:15103–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yoon BS, Pogue R, Ovchinnikov DA, Yoshii I, Mishina Y, Behringer RR, et al. BMPs regulate multiple aspects of growth-plate chondrogenesis through opposing actions on FGF pathways. Development. 2006;133:4667–78.

    Article  CAS  PubMed  Google Scholar 

  52. Suzuki T, Hasso SM, Fallon JF. Unique SMAD1/5/8 activity at the phalanx-forming region determines digit identity. Proc Natl Acad Sci USA. 2008;105:4185–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Laufer E, Pizette S, Zou H, Orozco OE, Niswander L. BMP expression in duck interdigital webbing: a reanalysis. Science. 1997;278:305.

    Article  CAS  PubMed  Google Scholar 

  54. Guha U, Gomes WA, Kobayashi T, Pestell RG, Kessler JA. In vivo evidence that BMP signaling is necessary for apoptosis in the mouse limb. Dev Biol. 2002;249:108–20.

    Article  CAS  PubMed  Google Scholar 

  55. Wang B, Fallon JF, Beachy PA. Hedgehog-regulated processing of Gli3 produces an anterior/posterior repressor gradient in the developing vertebrate limb. Cell. 2000;100:423–34.

    Article  CAS  PubMed  Google Scholar 

  56. Radhakrishna U, Blouin JL, Mehenni H, Patel UC, Patel MN, Solanki JV, et al. Mapping one form of autosomal dominant postaxial polydactyly type A to chromosome 7p15-q11.23 by linkage analysis. Am J Hum Genet. 1997;60:597–604.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Furniss D, Critchley P, Giele H, Wilkie AO. Nonsense-mediated decay and the molecular pathogenesis of mutations in SALL1 and GLI3. Am J Med Genet A. 2007;143A:3150–60.

    Article  CAS  PubMed  Google Scholar 

  58. Radhakrishna U, Bornholdt D, Scott HS, Patel UC, Rossier C, Engel H, et al. The phenotypic spectrum of GLI3 morphopathies includes autosomal dominant preaxial polydactyly type-IV and postaxial polydactyly type-A/B; No phenotype prediction from the position of GLI3 mutations. Am J Hum Genet. 1999;65:645–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Swanson AB, Brown KS. Hereditary triphalangeal thumb. J Hered. 1962;53:259–65.

    Article  Google Scholar 

  60. Farooq M, Troelsen JT, Boyd M, Eiberg H, Hansen L, Hussain MS, et al. Preaxial polydactyly/triphalangeal thumb is associated with changed transcription factor-binding affinity in a family with a novel point mutation in the long-range cis-regulatory element ZRS. Eur J Hum Genet. 2010;18:733–6. Epub 2010 Jan 13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wieczorek D, Pawlik B, Li Y, Akarsu NA, Caliebe A, May KJ, et al. A specific mutation in the distant sonic hedgehog (SHH) cis-regulator (ZRS) causes Werner mesomelic syndrome (WMS) while complete ZRS duplications underlie Haas type polysyndactyly and preaxial polydactyly (PPD) with or without triphalangeal thumb. Hum Mutat. 2010;31:81–9.

    Article  CAS  PubMed  Google Scholar 

  62. Muragaki Y, Mundlos S, Upton J, Olsen BR. Altered growth and branching patterns in synpolydactyly caused by mutations in HOXD13. Science. 1996;272:548–51.

    Article  CAS  PubMed  Google Scholar 

  63. Goodman FR, Bacchelli C, Brady AF, Brueton LA, Fryns JP, Mortlock DP, et al. Novel HOXA13 mutations and the phenotypic spectrum of hand-foot-genital syndrome. Am J Hum Genet. 2000;67:197–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mortlock DP, Innis JW. Mutation of hoxa-13 in hand-foot-genital syndrome. Nat Genet. 1997;15:179–80.

    Article  CAS  PubMed  Google Scholar 

  65. Mundlos S. The brachydactylies: a molecular disease family. Clin Genet. 2009;76:123–36.

    Article  CAS  PubMed  Google Scholar 

  66. Akiyama H, Chaboissier MC, Martin JF, Schedl A, de Crombrugghe B. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev. 2002;16:2813–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ogino T. Teratogenic relationship between polydactyly, syndactyly and cleft hand. J Hand Surg. 1990;15B:201–9.

    Article  Google Scholar 

  68. Naruse T, Takahara M, Takagi M, Oberg KC, Ogino T. Busulfaninduced central polydactyly, syndactyly and cleft hand or foot: a common mechanism of disruption leads to divergent phenotypes. Dev Growth Differ. 2007;49:533–41.

    Article  PubMed  Google Scholar 

  69. Debeer P, Peeters H, Driess S, De Smet L, Freese K, Matthijs G, et al. Variable phenotype in Greig cephalopolysyndactyly syndrome: clinical and radiological findings in 4 independent families and 3 sporadic cases with identified GLI3 mutations. Am J Med Genet A. 2003;120A:49–58.

    Article  PubMed  Google Scholar 

  70. Klopocki E, Ott CE, Benatar N, Ullmann R, Mundlos S, Lehmann K. A microduplication of the long range SHH limb regulator (ZRS) is associated with triphalangeal thumb-polysyndactyly syndrome. J Med Genet. 2008;45:370–5.

    Article  CAS  PubMed  Google Scholar 

  71. Lettice LA, Hill RE. Preaxial polydactyly: a model for defective long-range regulation in congenital abnormalities. Curr Opin Genet Dev. 2005;15:294–300.

    Article  CAS  PubMed  Google Scholar 

  72. Sun M, Ma F, Zeng X, Liu Q, Zhao XL, Wu FX, et al. Triphalangeal thumb-polysyndactyly syndrome and syndactyly type IV are caused by genomic duplications involving the long range, limb-specific SHH enhancer. J Med Genet. 2008;45:589–95.

    Article  CAS  PubMed  Google Scholar 

  73. Lettice LA, Heaney SJ, Purdie LA, Li L, de Beer P, Oostra BA, et al. A long-range Shh enhancer regulates expression in the developing limb and fin and is associated with preaxial polydactyly. Hum Mol Genet. 2003;12:1725–35.

    Article  CAS  PubMed  Google Scholar 

  74. Lettice LA, Hill AE, Devenney PS, Hill RE. Point mutations in a distant sonic hedgehog cis-regulator generate a variable regulatory output responsible for preaxial polydactyly. Hum Mol Genet. 2008;17:978–85.

    Article  CAS  PubMed  Google Scholar 

  75. Maas SA, Fallon JF. Single base pair change in the long-range sonic hedgehog limb-specific enhancer is a genetic basis for preaxial polydactyly. Dev Dyn. 2005;232:345–8.

    Article  CAS  PubMed  Google Scholar 

  76. Ogino T. A clinical and experimental study on teratogenic mechanism of cleft hand, polydactyly and syndactyly [in Japanese]. Nippon Seikeigeka Gakkai Zasshi. 1979;53:535–43.

    CAS  PubMed  Google Scholar 

  77. Bamshad M, Van Heest AE, Pleasure D. Arthrogryposis: a review and update. J Bone Joint Surg. 2009;91A(Suppl 4):40–6.

    Article  Google Scholar 

  78. Navti OB, Kinning E, Vasudevan P, Barrow M, Porter H, Howarth E, et al. Review of perinatal management of arthrogryposis at a large UK teaching hospital serving a multiethnic population. Prenat Diagn. 2010;30:49–56.

    CAS  PubMed  Google Scholar 

  79. Dimitraki M, Tsikouras P, Bouchlariotou S, Dafopoulos A, Konstantou E, Liberis V. Prenatal assessment of arthrogryposis. A review of the literature. J Matern Fetal Neonatal Med. 2011;24(1):32–6.

    Article  PubMed  Google Scholar 

  80. Wang W. Plastic surgery. Hangzhou: Zhejiang Science and Technology Press; 1999.

    Google Scholar 

  81. American Society for Surgery of the Hand Map of Hand Surgery Developed by the Hand Surgery Map Task Force copyright 2001 taken from internet.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd. and Zhejiang Science and Technology Publishing House

About this chapter

Cite this chapter

Wang, B., Wang, W., Ni, F. (2017). Classification of Congenital Deformities of Hands and Upper Limbs and Selection of Surgery Timing. In: Wang, W., Yao, J. (eds) Congenital Deformities of the Hand and Upper Limb. Plastic and Reconstructive Surgery. Springer, Singapore. https://doi.org/10.1007/978-981-10-5101-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5101-2_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5100-5

  • Online ISBN: 978-981-10-5101-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics