Skip to main content

Part of the book series: Series in BioEngineering ((SERBIOENG))

Abstract

Recent advances and clinical applications of signal analysis in the characterization of the most common supra-ventricular arrhythmia, i.e. atrial fibrillation (AF), are summarized in this chapter. The analysis of invasive and non-invasive electrocardiographic signals has revealed useful clinical information in a broad variety of scenarios, thus opening new perspectives in the understanding of the currently unknown mechanisms triggering and maintaining the arrhythmia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chugh SS, Roth GA, Gillum RF et al (2014) Global burden of atrial fibrillation in developed and developing nations. Glob Heart 9(1):113–9

    Article  Google Scholar 

  2. Zoni-Berisso M, Lercari F, Carazza T et al (2014) Epidemiology of atrial fibrillation: European perspective. Clin Epidemiol 6:213–20

    Article  Google Scholar 

  3. Khoo CW, Krishnamoorthy S, Lim HS et al (2012) Atrial fibrillation, arrhythmia burden and thrombogenesis. Int J Cardiol 157(3):318–23

    Article  Google Scholar 

  4. Wodchis WP, Bhatia RS, Leblanc K et al (2012) A review of the cost of atrial fibrillation. Value Health 15(2):240–8

    Article  Google Scholar 

  5. Van Wagoner DR, Piccini JP (2013) Albert CM (2015) Progress toward the prevention and treatment of atrial fibrillation: a summary of the heart rhythm society research forum on the treatment and prevention of atrial fibrillation, Washington, DC, December 9–10. Heart Rhythm 12(1):e5–e29

    Article  Google Scholar 

  6. Schotten U, Dobrev D, Platonov PG et al (2016) Current controversies in determining the main mechanisms of atrial fibrillation. J Intern Med 279(5):428–38

    Article  Google Scholar 

  7. Fabritz L, Guasch E, Antoniades C (2016) Expert consensus document: defining the major health modifiers causing atrial fibrillation: a roadmap to underpin personalized prevention and treatment. Nat Rev Cardiol 13(4):230–7

    Article  Google Scholar 

  8. January CT, Wann LS, Alpert JS et al (2014) 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. J Am Coll Cardiol 64(21):e1–76

    Article  Google Scholar 

  9. Margulescu AD, Mont L (2017) Persistent atrial fibrillation vs paroxysmal atrial fibrillation: differences in management. Expert Rev Cardiovasc Ther 15(8):601–618

    Article  Google Scholar 

  10. Kirchhof P, Benussi S, Kotecha D et al (2016) 2016 ESC guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur Heart J 37(38):2893–2962

    Google Scholar 

  11. Bond R, Olshansky B, Kirchhof P (2017) Recent advances in rhythm control for atrial fibrillation. F1000Res 6:1796

    Article  Google Scholar 

  12. Albåge A, Johansson B, Kennebäck G et al (2016) Long-term follow-up of cardiac rhythm in 320 patients after the Cox-Maze III procedure for atrial fibrillation. Ann Thorac Surg 101(4):1443–9

    Article  Google Scholar 

  13. Petrutiu S, Ng J, Nijm GM et al (2006) Atrial fibrillation and waveform characterization. a time domain perspective in the surface ECG. IEEE Eng Med Biol Mag 25:24–30

    Article  Google Scholar 

  14. Sörnmo L, Laguna P (2005) Bioelectrical signal processing in cardiac and neurological applications. Elsevier Academic Press

    Google Scholar 

  15. Sörnmo L, Stridh M, Husser D et al (2009) (1887) Analysis of atrial fibrillation: from electrocardiogram signal processing to clinical management. Philos Trans A Math Phys Eng Sci 367:235–53

    Article  MATH  Google Scholar 

  16. Alcaraz R, Rieta JJ (2010) A review on sample entropy applications for the non-invasive analysis of atrial fibrillation electrocardiograms. Biomed Signal Process Control 5:1–14

    Article  Google Scholar 

  17. Zhang Y, Mazgalev TN (2004) Ventricular rate control during atrial fibrillation and AV node modifications: past, present, and future. Pacing Clin Electrophysiol 27(3):382–93

    Article  Google Scholar 

  18. Sassi R, Cerutti S, Lombardi F et al (2015) Advances in heart rate variability signal analysis: joint position statement by the e-Cardiology ESC working group and the European heart rhythm association co-endorsed by the Asia Pacific heart rhythm society. Europace 17(9):1341–53

    Article  Google Scholar 

  19. Merah M, Abdelmalik TA, Larbi BH (2015) R-peaks detection based on stationary wavelet transform. Comput Methods Programs Biomed 121(3):149–60

    Article  Google Scholar 

  20. Nabil D, Reguig F (2015) Ectopic beats detection and correction methods: a review. Biomed Signal Process Control 18:228–244

    Article  Google Scholar 

  21. Stevenson WG, Soejima K (2005) Recording techniques for clinical electrophysiology. J Cardiovasc Electrophysiol 16(9):1017–22

    Article  Google Scholar 

  22. Martínez-Iniesta M, Ródenas J, Alcaraz R et al (2017) Waveform integrity in atrial fibrillation: The forgotten issue of cardiac electrophysiology. Ann Biomed Eng 45(8):1890–1907

    Article  Google Scholar 

  23. Rieta JJ, Hornero F (2007) Comparative study of methods for ventricular activity cancellation in atrial electrograms of atrial fibrillation. Physiol Meas 28(8):925–36

    Article  Google Scholar 

  24. Corino VDA, Rivolta MW, Sassi R et al (2013) Ventricular activity cancellation in electrograms during atrial fibrillation with constraints on residuals’ power. Med Eng Phys 35(12):1770–7

    Article  Google Scholar 

  25. Verheule S, Tuyls E, van Hunnik A et al (2010) Fibrillatory conduction in the atrial free walls of goats in persistent and permanent atrial fibrillation. Circ Arrhythm Electrophysiol 3(6):590–9

    Article  Google Scholar 

  26. Ng J, Sehgal V, Ng JK et al (2014) Iterative method to detect atrial activations and measure cycle length from electrograms during atrial fibrillation. IEEE Trans Biomed Eng 61(2):273–8

    Article  Google Scholar 

  27. Cantwell CD, Roney CH, Ng FS et al (2015) Techniques for automated local activation time annotation and conduction velocity estimation in cardiac mapping. Comput Biol Med 65:229–42

    Article  Google Scholar 

  28. Osorio D, Alcaraz R, Rieta J (2017) A fractionation-based local activation wave detector for atrial electrograms of atrial fibrillation. In: Computing in Cardiology, vol 44, pp 1–4

    Google Scholar 

  29. Gadenz L, Hashemi J, Shariat M et al (2017) Clinical role of dominant frequency measurements in atrial fibrillation ablation–a systematic review. J. Atr. Fibrillation 9(6):1–7

    Google Scholar 

  30. Bollmann A, Kanuru NK, McTeague KK et al (1998) Frequency analysis of human atrial fibrillation using the surface electrocardiogram and its response to ibutilide. Am J Cardiol 81(12):1439–1445

    Article  Google Scholar 

  31. Niwano S, Fukaya H, Sasaki T et al (2007) Effect of oral l-type calcium channel blocker on repetitive paroxysmal atrial fibrillation: spectral analysis of fibrillation waves in the holter monitoring. Europace 9(12):1209–15

    Article  Google Scholar 

  32. Alcaraz R, Rieta JJ (2009) Non-invasive organization variation assessment in the onset and termination of paroxysmal atrial fibrillation. Comput Methods Progr Biomed 93(2):148–154

    Article  Google Scholar 

  33. Petrutiu S, Sahakian AV, Swiryn S (2007) Abrupt changes in fibrillatory wave characteristics at the termination of paroxysmal atrial fibrillation in humans. Europace 9(7):466–70

    Article  Google Scholar 

  34. Nilsson F, Stridh M, Bollmann A et al (2006) Predicting spontaneous termination of atrial fibrillation using the surface ECG. Med Eng Phys 28(8):802–8

    Article  Google Scholar 

  35. Husser D, Cannom DS, Bhandari AK et al (2007) Electrocardiographic characteristics of fibrillatory waves in new-onset atrial fibrillation. Europace 9(8):638–42

    Article  Google Scholar 

  36. Bollmann A, Mende M, Neugebauer A et al (2002) Atrial fibrillatory frequency predicts atrial defibrillation threshold and early arrhythmia recurrence in patients undergoing internal cardioversion of persistent atrial fibrillation. Pacing Clin Electrophysiol 25(8):1179–84

    Article  Google Scholar 

  37. Bollmann A, Husser D, Steinert R et al (2003) Echocardiographic and electrocardiographic predictors for atrial fibrillation recurrence following cardioversion. J Cardiovasc Electrophysiol 14(10 Suppl):S162–S165

    Article  Google Scholar 

  38. Yoshida K, Chugh A, Good E et al (2010) A critical decrease in dominant frequency and clinical outcome after catheter ablation of persistent atrial fibrillation. Heart Rhythm 7(3):295–302

    Article  Google Scholar 

  39. Matsuo S, Lellouche N, Wright M et al (2009) Clinical predictors of termination and clinical outcome of catheter ablation for persistent atrial fibrillation. J Am Coll Cardiol 54(9):788–95

    Article  Google Scholar 

  40. Raine D, Langley P, Murray A et al (2005) Surface atrial frequency analysis in patients with atrial fibrillation: assessing the effects of linear left atrial ablation. J Cardiovasc Electrophysiol 16(8):838–44

    Article  Google Scholar 

  41. Garibaldi M, Zarzoso V, Latcu DG et al (2012) Predicting catheter ablation outcome in persistent atrial fibrillation using atrial dominant frequency and related spectral features. Conf Proc IEEE Eng Med Biol Soc 2012:613–6

    Google Scholar 

  42. Alcaraz R, Hornero F, Rieta JJ (2016) Electrocardiographic spectral features for long-term outcome prognosis of atrial fibrillation catheter ablation. Ann Biomed Eng 44(11):3307–3318

    Article  Google Scholar 

  43. Al Abed A, Guo T, Lovell NH et al (2013) Optimisation of ionic models to fit tissue action potentials: application to 3D atrial modelling. Comput Math Methods Med 2013:951234

    Article  MathSciNet  MATH  Google Scholar 

  44. Vayá C, Rieta JJ (2009) Time and frequency series combination for non-invasive regularity analysis of atrial fibrillation. Med Biol Eng Comput 47(7):687–96

    Article  Google Scholar 

  45. Stridh M, Sörnmo L, Meurling CJ et al (2004) Sequential characterization of atrial tachyarrhythmias based on ECG time-frequency analysis. IEEE Trans Biomed Eng 51(1):100–14

    Article  Google Scholar 

  46. Ortigosa N, Fernández C, Galbis A et al (2016) Classification of persistent and long-standing persistent atrial fibrillation by means of surface electrocardiograms. Biomed Tech (Berl) 61(1):19–27

    Article  Google Scholar 

  47. Alcaraz R, Rieta JJ (2012) Central tendency measure and wavelet transform combined in the non-invasive analysis of atrial fibrillation recordings. Biomed Eng Online 11:46

    Article  Google Scholar 

  48. Sterling M, Huang DT, Ghoraani B (2014) Developing time-frequency features for prediction of the recurrence of atrial fibrillation after electrical cardioversion therapy. Conf Proc IEEE Eng Med Biol Soc 2014:5498–501

    Google Scholar 

  49. Alcaraz R, Hornero F, Martínez A et al (2012) Short-time regularity assessment of fibrillatory waves from the surface ECG in atrial fibrillation. Physiol Meas 33(6):969–84

    Article  Google Scholar 

  50. Alcaraz R, Rieta JJ, Hornero F (2009) Non-invasive atrial fibrillation organization follow-up under successive attempts of electrical cardioversion. Med Biol Eng Comput 47(12):1247–55

    Article  Google Scholar 

  51. Kao T, Su Y, Lu C et al (2005) Differentiation of atrial flutter and atrial fibrillation from surface electrocardiogram using nonlinear analysis. J Med Biolog Eng 25(3):117–122

    Google Scholar 

  52. Sun R, Wang Y (2008) Predicting termination of atrial fibrillation based on the structure and quantification of the recurrence plot. Med Eng Phys 30(9):1105–11

    Article  Google Scholar 

  53. Baykaner T, Trikha R, Zaman JAB et al (2017) Electrocardiographic spatial loops indicate organization of atrial fibrillation minutes before ablation-related transitions to atrial tachycardia. J Electrocardiol 50(3):307–315

    Article  Google Scholar 

  54. Masè M, Disertori M, Marini M et al (2017) Characterization of rate and regularity of ventricular response during atrial tachyarrhythmias insight on atrial and nodal determinants. Physiol Meas 38(5):800–818

    Article  Google Scholar 

  55. Shaffer F, Ginsberg JP (2017) An overview of heart rate variability metrics and norms. Front Public Health 5:258

    Article  Google Scholar 

  56. Boon K, Khalil-Hani M, Malarvili M (2018) Paroxysmal atrial fibrillation prediction based on HRV analysis and non-dominated sorting genetic algorithm. Comput Methods Progr Biomed 153:171–184

    Article  Google Scholar 

  57. Bollmann A, Lombardi F (2006) Electrocardiology of atrial fibrillation. Current knowledge and future challenges. IEEE Eng Med Biol Mag 25(6):15–23

    Article  Google Scholar 

  58. Tuzcu V, Nas S, Börklü T et al (2006) Decrease in the heart rate complexity prior to the onset of atrial fibrillation. Europace 8(6):398–402

    Article  Google Scholar 

  59. Shin DG, Yoo CS, Yi SH et al (2006) Prediction of paroxysmal atrial fibrillation using nonlinear analysis of the R-R interval dynamics before the spontaneous onset of atrial fibrillation. Circ J 70(1):94–9

    Article  Google Scholar 

  60. Huang JH, Lin YK, Hsieh MH et al (2017) Modulation of autonomic nervous activity in the termination of paroxysmal atrial fibrillation. Pacing Clin Electrophysiol 40(4):401–408

    Article  Google Scholar 

  61. Choi W, Choi E, Piccirillo G et al (2014) Pre-cardioversion heart rate variability predicts recurrence of atrial fibrillation after electrical cardioversion. Exp Clin Cardiol 20(8):4419–4431

    Google Scholar 

  62. Bertaglia E, Zoppo F, Bonanno C et al (2005) Autonomic modulation of the sinus node following electrical cardioversion of persistent atrial fibrillation: relation with early recurrence. Int J Cardiol 102(2):219–23

    Article  Google Scholar 

  63. Mori H, Kato R, Ikeda Y, et al (2017) Analysis of the heart rate variability during cryoballoon ablation of atrial fibrillation. Europace

    Google Scholar 

  64. Seaborn GEJ, Todd K, Michael KA et al (2014) Heart rate variability and procedural outcome in catheter ablation for atrial fibrillation. Ann Noninvasive Electrocardiol 19(1):23–33

    Article  Google Scholar 

  65. Wongcharoen W, Kiatkumpol C, Phromminitikul A et al (2014) The predictive effort of heart rate variability on atrial fibrillation after coronary artery bypass grafting. Exp Clinical Cardiol 20(64):145–159

    Google Scholar 

  66. Compostella L, Russo N, D’Onofrio A et al (2015) Abnormal heart rate variability and atrial fibrillation after aortic surgery. Rev Bras Cir Cardiovasc 30(1):55–62

    Google Scholar 

  67. Mandel-Portnoy Y, Levin MA, Bansilal S et al (2016) Low intraoperative heart rate volatility is associated with early postoperative mortality in general surgical patients: a retrospective case-control study. J Clin Monit Comput 30(6):911–918

    Article  Google Scholar 

  68. Lombardi F, Tarricone D, Tundo F et al (2004) Autonomic nervous system and paroxysmal atrial fibrillation: a study based on the analysis of RR interval changes before, during and after paroxysmal atrial fibrillation. Eur Heart J 25(14):1242–8

    Article  Google Scholar 

  69. Sun RR, Wang YY (2009) Predicting spontaneous termination of atrial fibrillation based on the RR interval. Proc Inst Mech Eng H 223(6):713–26

    Article  Google Scholar 

  70. Stein KM, Borer JS, Hochreiter C et al (1994) Variability of the ventricular response in atrial fibrillation and prognosis in chronic nonischemic mitral regurgitation. Am J Cardiol 74(9):906–11

    Article  Google Scholar 

  71. Frey B, Heinz G, Binder T et al (1995) Diurnal variation of ventricular response to atrial fibrillation in patients with advanced heart failure. Am Heart J 129(1):58–65

    Article  Google Scholar 

  72. Platonov PG, Holmqvist F (2011) Atrial fibrillatory rate and irregularity of ventricular response as predictors of clinical outcome in patients with atrial fibrillation. J Electrocardiol 44(6):673–7

    Article  Google Scholar 

  73. Hayano J, Ishihara S, Fukuta H et al (2002) Circadian rhythm of atrioventricular conduction predicts long-term survival in patients with chronic atrial fibrillation. Chronobiol Int 19(3):633–48

    Article  Google Scholar 

  74. Oka T, Nakatsu T, Kusachi S et al (1998) Double-sector Lorenz plot scattering in an R-R interval analysis of patients with chronic atrial fibrillation: incidence and characteristics of vertices of the double-sector scattering. J Electrocardiol 31(3):227–35

    Article  Google Scholar 

  75. Climent AM, Guillem MS, Husser D et al (2009) Poincaré surface profiles of RR intervals: a novel noninvasive method for the evaluation of preferential AV nodal conduction during atrial fibrillation. IEEE Trans Biomed Eng 56(2):433–42

    Article  Google Scholar 

  76. Gelzer AR, Moïse NS, Vaidya D et al (2000) Temporal organization of atrial activity and irregular ventricular rhythm during spontaneous atrial fibrillation: an in vivo study in the horse. J Cardiovasc Electrophysiol 11(7):773–84

    Article  Google Scholar 

  77. Corino VDA, Ulimoen SR, Enger S et al (2015) Rate-control drugs affect variability and irregularity measures of RR intervals in patients with permanent atrial fibrillation. J Cardiovasc Electrophysiol 26(2):137–41

    Article  Google Scholar 

  78. Corino VDA, Holmqvist F, Mainardi LT et al (2014) Beta-blockade and A1-adenosine receptor agonist effects on atrial fibrillatory rate and atrioventricular conduction in patients with atrial fibrillation. Europace 16:587–94

    Article  Google Scholar 

  79. Climent AM, Atienza F, Millet J et al (2011) Generation of realistic atrial to atrial interval series during atrial fibrillation. Med Biol Eng Comput 49(11):1261–8

    Article  Google Scholar 

  80. Corino VDA, Sandberg F, Mainardi LT et al (2011) An atrioventricular node model for analysis of the ventricular response during atrial fibrillation. IEEE Trans Biomed Eng 58(12):3386–95

    Article  Google Scholar 

  81. Alcaraz R, Rieta JJ (2013) Nonlinear synchronization assessment between atrial and ventricular activations series from the surface ECG in atrial fibrillation. Biomed Signal Process Control 8(6)

    Article  Google Scholar 

  82. Mase M, Glass L, Disertori M et al (2013) The AV shynchrogram: a novel approacth to quantify atrioventricular couplin during atrial arrhythmias. Biomed Signal Process Control 8(6):1008–1016

    Article  Google Scholar 

  83. Masè M, Marini M, Disertori M et al (2015) Dynamics of AV coupling during human atrial fibrillation: role of atrial rate. Am J Physiol Heart Circ Physiol 309(1):H198–205

    Article  Google Scholar 

  84. Wells JL Jr, Karp RB, Kouchoukos NT et al (1978) Characterization of atrial fibrillation in man: studies following open heart surgery. Pacing Clin Electrophysiol 1:426–38

    Article  Google Scholar 

  85. Gaita F, Calò L, Riccardi R et al (2001) Different patterns of atrial activation in idiopathic atrial fibrillation: simultaneous multisite atrial mapping in patients with paroxysmal and chronic atrial fibrillation. J Am Coll Cardiol 37(2):534–41

    Article  Google Scholar 

  86. Hoekstra BP, Diks CG, Allessie MA et al (1995) Nonlinear analysis of epicardial atrial electrograms of electrically induced atrial fibrillation in man. J Cardiovasc Electrophysiol 6(6):419–40

    Article  Google Scholar 

  87. Mainardi LT, Porta A, Calcagnini G et al (2001) Linear and non-linear analysis of atrial signals and local activation period series during atrial-fibrillation episodes. Med Biol Eng Comput 39(2):249–54

    Article  Google Scholar 

  88. Hoekstra BPT, Diks CGH, Allessie MA et al (1997) Nonlinear analysis of the pharmacological conversion of sustained atrial fibrillation in conscious goats by the class Ic drug cibenzoline. Chaos 7(3):430–446

    Article  MATH  Google Scholar 

  89. Mainardi LT, Corino VDA, Lombardi L et al (2004) Assessment of the dynamics of atrial signals and local atrial period series during atrial fibrillation: effects of isoproterenol administration. Biomed Eng Online 3(1):37

    Article  Google Scholar 

  90. Cirugeda-Rodán E, Novak D, Kremen V et al (2015) Caracterization of complex fractionated atrial electrograms by sample entropy: an international multi-center study. Entropy 17(11):7493–7509

    Article  Google Scholar 

  91. Orozco-Duque A, Novak D, Kremen V et al (2015) Multifractal analysis for grading complex fractionated electrograms in atrial fibrillation. Physiol Meas 36(11):2269–84

    Article  Google Scholar 

  92. Pitschner HF, Berkovic A, Grumbrecht S et al (1998) Multielectrode basket catheter mapping for human atrial fibrillation. J Cardiovasc Electrophysiol 9(8 Suppl):S48–56

    Google Scholar 

  93. Cervigón R, Moreno J, Reilly RB et al (2010) Entropy measurements in paroxysmal and persistent atrial fibrillation. Physiol Meas 31(7):1011–20

    Article  Google Scholar 

  94. Berkowitsch A, Carlsson J, Erdogan A et al (2000) Electrophysiological heterogeneity of atrial fibrillation and local effect of propafenone in the human right atrium: analysis based on symbolic dynamics. J Interv Card Electrophysiol 4(2):383–94

    Article  Google Scholar 

  95. Cervigón R, Moreno J, Sánchez C et al (2009) Atrial fibrillation organization: quantification of propofol effects. Med Biol Eng Comput 47(3):333–41

    Article  Google Scholar 

  96. Masè M, Faes L, Antolini R et al (2005) Quantification of synchronization during atrial fibrillation by Shannon entropy: validation in patients and computer model of atrial arrhythmias. Physiol Meas 26(6):911–23

    Article  Google Scholar 

  97. Mainardi LT, Corino VDA, Lombardi L et al (2006) Linear and nonlinear coupling between atrial signals. Three methods for the analysis of the relationships among atrial electrical activities in different sites. IEEE Eng Med Biol Mag 25(6):63–70

    Article  Google Scholar 

  98. Corino VDA, Mantica M, Lombardi F et al (2006) Assessment of spatial organization in the atria during paroxysmal atrial fibrillation and adrenergic stimulation. Biomed Tech (Berl) 51(4):260–3

    Article  Google Scholar 

  99. Yaksh A, Kik C, Knops P et al (2014) Atrial fibrillation: to map or not to map? Neth Heart J 22(6):259–66

    Google Scholar 

  100. Kim D, Ahn H (2012) Current stuatus and future cardiac mapping in atrial fibrillation. In: Choi PJI (ed) Atrial fibrillation—basic research and clinical applications, chap. 6. InTech, pp. 93–124

    Google Scholar 

  101. Narayan SM, Vishwanathan MN, Kowalewski CAB, et al (2017) The continuous challenge of af ablation: From foci to rotational activity. Rev Port Cardiol 36(Suppl 1):9–17

    Article  Google Scholar 

  102. Haissaguerre M, Hocini M, Denis A et al (2014) Driver domains in persistent atrial fibrillation. Circulation 130(7):530–8

    Article  Google Scholar 

  103. Atienza F, Climent AM, Guillem MS (2015) Frontiers in non-invasive cardiac mapping: rotors in atrial fibrillation-body surface frequency-phase mapping. Card Electrophysiol Clin 7(1):59–69

    Article  Google Scholar 

  104. Zhou Z, Jin Q, Chen LY et al (2016) Noninvasive imaging of high-frequency drivers and reconstruction of global dominant frequency maps in patients with paroxysmal and persistent atrial fibrillation. IEEE Trans Biomed Eng 63(6):1333–1340

    Article  Google Scholar 

  105. Rodrigo M, Guillem MS, Climent AM et al (2014) Body surface localization of left and right atrial high-frequency rotors in atrial fibrillation patients: a clinical-computational study. Heart Rhythm 11(9):1584–91

    Article  Google Scholar 

  106. King B, Porta-Sánchez A, Massé S et al (2017) Effect of spatial resolution and filtering on mapping cardiac fibrillation. Heart Rhythm 14(4):608–615

    Article  Google Scholar 

  107. Nattel S, Xiong F, Aguilar M (2017) Demystifying rotors and their place in clinical translation of atrial fibrillation mechanisms. Nat Rev Cardiol 14(9):509–520

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by grants DPI2017–83952–C3 MINECO/AEI/FEDER, UE and SBPLY/17/180501/000411 from Junta de Comunidades de Castilla-La Mancha.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raúl Alcaraz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alcaraz, R., Rieta, J.J. (2019). Signal Analysis in Atrial Fibrillation. In: Golemati, S., Nikita, K. (eds) Cardiovascular Computing—Methodologies and Clinical Applications. Series in BioEngineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-5092-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5092-3_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5091-6

  • Online ISBN: 978-981-10-5092-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics