Skip to main content

Pineapple Waste Utilization as a Sustainable Means of Waste Management

  • Chapter
  • First Online:
Sustainable Technologies for the Management of Agricultural Wastes

Abstract

Pineapple waste contains various substances that are valuable for the development of new and emerging technologies, nutraceuticals, food, pharmaceuticals, as well as biogas and bioethanol production. Bromelain extraction from pineapple waste is a very highly looked into area, while dietary fibers and phenolic antioxidants could be used as impending nutraceutical resource, capable of offering significant low-cost nutritional dietary supplement for low-income communities. The booming market of functional food has created a vast vista for utilization of natural resources. In this regard, cheap substrates, such as pineapple wastes, have promising prospect. Thus, environmentally polluting by-products could be converted into products with a higher economic value than the main product; hence with sustainable utilization of pineapple waste and with application of novel scientific and technological methods, valuable products from pineapple wastes could be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adewale M. Taiwo, (2011) Composting as A Sustainable Waste Management Technique in Developing Countries. Journal of Environmental Science and Technology 4 (2):93-102

    Google Scholar 

  • Alothman M, Bhat R, Karim AA (2009) Antioxidant capacity and phenolic content of selected tropical fruits from Malaysia, extracted with different solvents. Food Chem 115:785–788

    Article  CAS  Google Scholar 

  • Arib RMN, Sapuan SM, Ahmad MMHM, Paridah MT, Zaman HMDK (2006) Mechanical properties of pineapple leaf fibre reinforced polypropylene composites. Mater Des 27:391–396

    Article  CAS  Google Scholar 

  • Ashworth GS, Azevedo P (2009) Agricultural waste nova science publishers’, pp 305–309

    Google Scholar 

  • Babel S, Fukushi K, Sitanrassamee B (2004) Effect of acid speciation on solid waste liquefaction in an anaerobic acid digester. Water Res 38:2417–2423

    Article  CAS  Google Scholar 

  • Babu BR, Rastogi NK, Raghavarao KSMS (2008) Liquid–liquid extraction of bromelain and polyphenol oxidase using aqueous two-phase system. Chem Eng Process 47:83–89

    Article  CAS  Google Scholar 

  • Ban-Koffi L, Han YW (1990) Alcohol production from pineapple waste. World J Microbiol Biotechnol 6:281–284

    Article  CAS  Google Scholar 

  • Bardiya N, Somayaji D, Khanna S (1996) Biomethanation of banana peel and pineapple waste. Bioresour Technol 58:73–76

    Article  CAS  Google Scholar 

  • Bhui K, Prasad S, George J, Shukla Y (2009) Bromelain inhibits COX-2 expression by blocking the activation of MAPK regulated NF-kappa B against skin tumor-initiating triggering mitochondrial death pathway. Cancer Lett 282(2):167–176

    Google Scholar 

  • Cabrera HAP, Menezes HC, Oliveira JV, Batista RFS (2001) Evaluation of residual levels of benomyl, methyl parathion, diuron, and vamidothion in pineapple pulp and bagasse (Smooth cayenne). J Agric Food Chem 48:5750–5753

    Article  Google Scholar 

  • Chobotava K, Vernallis AB, Majid FAA (2009) Bromelain’s activity and potential as an anti-cancer agent: current evidence and perspectives. Cancer Lett 290:148–156

    Article  Google Scholar 

  • Chompoo J, Upadhyay A, Kishimoto W, Makise T, Tawata S (2011) Advanced glycation end products inhibitors from Alpinia zerumbet rhizomes. Food Chem 129(3):709–715

    Article  CAS  Google Scholar 

  • Dacera DDM, Babel S (2008) Removal of heavy metals from contaminated sewage sludge using Aspergillus niger fermented raw liquid from pineapple wastes. Bioresour Technol 99:1682–1689

    Article  Google Scholar 

  • Dacera DDM, Babel S, Parkpian P (2009) Potential for land application of contaminated sewage sludge treated with fermented liquid from pineapple wastes. J Hazard Mater 167:866–872

    Article  Google Scholar 

  • Devi LU, Bhagawan SS, Thomas S (1997) Mechanical properties of pineapple leaf fiber-reinforced polyester composites. J Appl Polym Sci 64:1739–1748

    Article  CAS  Google Scholar 

  • El-Fadel M, Findikakis AN, Leckie JO (1997) Environmental impacts of solid waste landfilling. J Environ Manag 50:1–25

    Article  Google Scholar 

  • Gardener PT, White TAC, McPhail DB, Duthie GG (2000) The relative contributions of vitamin C, carotenoids and phenolics to the antioxidant potential of fruit juices. Food Chem 68:471–474

    Article  Google Scholar 

  • Glossary of Environment Statistics: Series F, No. 67/Department for Economic and Social Information and Policy Analysis, United Nations (1997) UN, New York

    Google Scholar 

  • Gorinstein S, Martin-Belloso O, Lojek A, Ciz M, Soliva-Fortuny R, Park Y-S, Caspi A, Libman I, Trakhtenberg S (2002) Comparative content of some phytochemicals in Spanish apples, peaches and pears. J Sci Food Agric 82:1166–1170

    Article  CAS  Google Scholar 

  • Guo C, Yang J, Wei J, Li Y, Xu J, Jiang Y (2003) Antioxidant activities of peel, pulp, and seed fractions of common fruits as determined by FRAP assay. Nutr Res 23:1719–1726

    Article  CAS  Google Scholar 

  • Hameed BH, Krishni RR, Sata SA (2009) A novel agricultural waste adsorbent for the removal of cationic dye from aqueous solutions. J Hazard Mater 162:305–311

    Article  CAS  Google Scholar 

  • Hebbar HU, Sumana B, Raghavarao KSMS (2008) Use of reverse micellar systems for the extraction and purification of bromelain from pineapple wastes. Bioresour Technol 99:4896–4902

    Article  Google Scholar 

  • Idris A, Suzana W (2006) Effect of sodium alginate concentration, bead diameter, initial pH and temperature on lactic acid production from pineapple waste using immobilized Lactobacillus delbrueckii. Process Biochem 41:1117–1123

    Article  CAS  Google Scholar 

  • Imandi SB, Bandaru VVR, Somalanka SR, Bandaru SR, Garapati HR (2008) Application of statistical experimental designs of medium constituents for the production of citric acid from pineapple waste. Bioresour Technol 99:4445–4450

    Article  CAS  Google Scholar 

  • Jin B, Yin P, Ma Y, Zhao L (2005) Production of lactic acid and fungal biomass by Rhizopus fungi from food processing waste streams. J Ind Microbiol Biotechnol 32:678–686

    Article  CAS  Google Scholar 

  • Kataki MS (2010) Pharmacol Online 2:308–319

    Google Scholar 

  • Kalpana MB, Sriram Prasath G, Subramanian S (2014) Studies on antidiabetic activity of Anans cosmus leaves in STZ induced diabetic rats. Pharm Lett 6(1):190–198

    Google Scholar 

  • Ketnawa S, Rawdkuen SF, Chaiwut P (2010) Two phase partitioning and collagen hydrolysis of bromelain from pineapple peel Nang Lae cultivar. Biochem Eng J 52:205–211

    Article  CAS  Google Scholar 

  • Kumar D, Jain VK, Shanker G, Srivastava A (2003) Utilisation of fruits waste for citric acid production by solid state fermentation. Process Biochem 38:1725–1729

    Article  CAS  Google Scholar 

  • Kurosumi A, Sasaki C, Yamashita Y, Nakamura Y (2009) Utilization of various fruit juice as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohydr Polym 76:333–335

    Article  CAS  Google Scholar 

  • Larrauri JA, Ruperez P, Calixto FS (1997) Pineapple shell as a source of dietary fiber with associated polyphenols. J Agric Food Chem 45:4028–4031

    Article  CAS  Google Scholar 

  • Luo S, Netravali AN (1999) Mechanical and thermal properties of environment-friendly “green” composites made from pineapple leaf fibers and poly (hydroxybutyrate-co-valerate) resin. Polym Compos 20:367–378

    Article  CAS  Google Scholar 

  • Mahamad MN, Zaini MA, Zakaria ZA (2015) Preparation and characterization of activated carbon from pineapple waste biomass for dye removal. Int Biodeterior Biodegrad 102:274–280

    Article  CAS  Google Scholar 

  • Manzoor Z, Nawaz A, Mukhtar H, Haq I, (2016) Bromelain: methods of extraction, purification and therapeutic applications. Braz Arch Biol Technol 59 (0)

    Google Scholar 

  • Mathew S, Zakaria ZA, Musa NF (2015) Antioxidant property and chemical profile of pyroligneous acid from pineapple plant waste biomass. Process Biochem 50(11):1985–1992

    Google Scholar 

  • Mbuligwe SE, Kassenga GR (2004) Feasibility and strategies for anaerobic digestion of solid wastes for energy production in Dares Salaam city, Tanzania. Resour Conserv Recycl 42:183–203

    Article  Google Scholar 

  • Murachi T, Yasui M, Yasuda Y (1964) Purification and physical characterization of stem bromelain

    Google Scholar 

  • Nie H, Li S, Zhou Y, Chen T, He Z, Su S, Zhang H, Xue Y, Zhu L (2008) Purification of bromelain using immobilized metal affinity membranes. J Biotechnol 136(S):S402–S459

    Google Scholar 

  • Nigam JN (1999a) Continuous ethanol production from pineapple cannery waste. J Biotechnol 72:197–202

    Article  CAS  Google Scholar 

  • Nigam JN (1999b) Continuous cultivation of the yeast Candida utilis at different dilution rates on pineapple cannery waste. World J Microbiol Biotechnol 15:115–117

    Article  Google Scholar 

  • Nigam JN (2000) Continuous ethanol production from pineapple cannery waste using immobilized yeast cells. J Biotechnol 80:189–193

    Article  CAS  Google Scholar 

  • Oliveira AC, Valentim IB, Silva CA, Bechara EJH, Barros MP, Mano CM, Goulart MOFG (2009) Total phenolic content and free radical scavenging activities of methanolic extract powders of tropical fruit residues. Food Chem 115:469–475

    Article  Google Scholar 

  • Oranusi S, Owolabi JB, Dahunsi SO (2015) Biogas generation from water melon peels, pineapple peels and food wastes. International conference on African development issues CU- ICADI Biotechnology and bioinformatics track

    Google Scholar 

  • Praveena JR, Estherlydia D (2014) Comparative study of phytochemical screening and antioxidant capacities of vinegar made from peel and fruit of pineapple (Ananas comosus l.) Int J Pharma Biol Sci Int J Pharm Biol Sci. 2014 5(4):394–403

    Google Scholar 

  • Rabiu Z, Zakaria ZA (2016) Pyroligneous acid production from palm kernel shell biomass. J Appl Environ Biol Sci 7(2S):59–62, 2017

    Google Scholar 

  • Rani DS, Nand K (2004) Ensilage of pineapple processing waste for methane generation. Waste Manag 24:523–528

    Article  CAS  Google Scholar 

  • Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77(3):247–255

    Article  CAS  Google Scholar 

  • Roda A, De Faveri DM, Dordoni R, Lambri M (2014) Vinegar production from pineapple waste-preliminary –saccharification trials. Chem EngTrans 37:607–612

    Google Scholar 

  • Senkoro H (2003) Solid waste in Africa: a WHO/AFRO perspective. CWG workshop: solid waste collection that benefits the urban poor. Dar es Salaam

    Google Scholar 

  • Senthilkumaar S, Bharathi S, Nithyanandhi D, Subburam V (2000) Biosorption of toxic heavy metals from aqueous solutions. Bioresour Technol 75:163–165

    Article  CAS  Google Scholar 

  • Song LL (1999) [Chinese herbs. chapter 8] Shang Hai, Administrant Department of National Chinese Traditional Medicine. pp 296–297 (in Chinese)

    Google Scholar 

  • Sreenath HK, Sudarshanakrishna KR, Prasad NN, Santhanam K (1996) Characteristics of some fiber incorporated cake preparations and their dietary fiber content. Starch-Starke 48:72–76

    Article  CAS  Google Scholar 

  • Sripanidkulchai B, Wongpanich V, Laupattarakasem P, Suwansaksri J, Jirakulsomchok D (2001) Diuretic effects of selected Thai indigenous medicinal plants in rats. J Ethnopharmacol 75:185–190

    Article  CAS  Google Scholar 

  • Sun J, Chu Y, Wu X, Liu RH (2002) Antioxidant and anti-proliferative activities of common fruits. J Agric Food Chem 50:7449–7454

    Article  CAS  Google Scholar 

  • Taiwo AM (2011) Composting as a sustainable waste management technique in developing countries. J Environ Sci Technol 4(2):93–102

    Article  CAS  Google Scholar 

  • Tanaka K, Hilary ZD, Ishizaki A (1999) Investigation of the utility of pineapple juice and pineapple waste material as low cost substrate for ethanol fermentation by Zymomonas mobilis. J Biosci Bioeng 87:642–646

    Article  CAS  Google Scholar 

  • Tawata S, Upadhyay A (2010) Applicability of mimosine as neuraminidase inhibitors. Japan Kokai Tokyo Koho. (Japan Patent)

    Google Scholar 

  • Tran AV (2006) Chemical analysis and pulping study of pineapple crown leaves. Ind Crop Prod 24:66–74

    Article  CAS  Google Scholar 

  • Tran CT, Mitchell DA (1995) Pineapple waste - a novel substrate for citric acid production by solid state fermentation. Biotechnol Lett 17:1107–1110

    Article  CAS  Google Scholar 

  • Tran CT, Sly LI, Mitchell DA (1998) Selection of a strain of Aspergillus for the production of citric acid from pineapple waste in solid-state fermentation. World J Microbiol Biotechnol 14:399–404

    Article  CAS  Google Scholar 

  • Ueno T, Ozawa Y, Ishikawa M, Nakanishi K, Kimura T (2003) Lactic acid production using two food processing wastes, canned pineapple syrup and grape invertase as substrate and enzyme. Biotechnol Lett 25:573–577

    Article  CAS  Google Scholar 

  • UNEP (2002) International source book on environmentally sound technologies for municipal solid waste management. (IETC) Technical Publication, USA

    Google Scholar 

  • Upadhyay A, Chompoo J, Kishimoto W, Makise T, Tawata S (2011) HIV-1 integrase and neuraminidase inhibitors from Alpinia zerumbet. J Agric Food Chem 59:2857–2862

    Article  CAS  Google Scholar 

  • Upadhyay A, Uezato Y, Tawata S., Ohkawa H (2009) CYP2C9 catalyzed bioconversion of secondary metabolites of three Okinawan plants. In: Shoun H, Ohkawa H, (eds) Proceedings of 16th international conference on cytochrome P450, Nago, Okinawa, Japan, 2009, pp 31–34

    Google Scholar 

  • Vijayaraghavan K, Ahmad D, Soning C (2007) Bio-hydrogen generation from mixed fruit peel waste using anaerobic contact filter. Int J Hydrog Energy 32:4754–4760

    Article  CAS  Google Scholar 

  • Wang CH, Lin PJ, Chang JS (2006) Fermentative conversion of sucrose and pineapple waste into hydrogen gas in phosphate-buffered culture seeded with municipal sewage sludge. Process Biochem 41:1353–1358

    Article  CAS  Google Scholar 

  • Weng CH, Lin YT, Tzeng TW (2009) Removal of methylene blue from aqueous solution by adsorption onto pineapple leaf powder. J Hazard Mater 170:417–424

    Article  CAS  Google Scholar 

  • Wihersaari M (2010) Greenhouse gas emissions from final harvest fuel chip Production in Finland. Biomass BioEnergy 28(5):435–443

    Article  Google Scholar 

  • Xi W, Wang W, Su H, Xing D, Pan Y, Du L (2006) Efffects of ethanolic extracts of Ananas cosmos L. leaves on insulin sensitivity in rats and HepG2. Comp Biochem Physiol C Toxicol Pharmacol 143(4):429–435

    Article  Google Scholar 

  • Xie WD, Xing DM, Sun H, Wang W, Ding Y, Du LJ (2005) The effects of Ananascomosus L. leaves on diabetic–dyslipidemic rats induced by alloxan and a high-fat/high-cholesterol diet. Am J Chin Med 33:95–105

    Article  Google Scholar 

  • Yahayu M, Mahmud KN, Mahamad MN, Ngadiran S, Lipeh S, Ujang S, Zakaria ZA (2017) Efficacy of pyroligneous acid from pineapple waste biomass as wood preserving agent. J Teknol 79(4):1–8

    Google Scholar 

  • Yamuna M, Kamaraj M (2016) Pineapple peel waste activated carbon as an adsorbent for the effective removal of methylene blue dye from aqueous solution. Int J ChemTech Res 9(05):544–550

    Google Scholar 

  • Zakaria ZA, Zakaria Z, Surif S, Ahmad WA (2007) Biological detoxification of Cr (VI) using wood-husk immobilized Acinetobacter haemolyticus. J Hazard Mater 148:164–171

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zainab Rabiu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Rabiu, Z., Maigari, F.U., Lawan, U., Mukhtar, Z.G. (2018). Pineapple Waste Utilization as a Sustainable Means of Waste Management. In: Zakaria, Z. (eds) Sustainable Technologies for the Management of Agricultural Wastes. Applied Environmental Science and Engineering for a Sustainable Future. Springer, Singapore. https://doi.org/10.1007/978-981-10-5062-6_11

Download citation

Publish with us

Policies and ethics