Skip to main content

Computational Studies of Li@C60

  • Chapter
  • First Online:
Endohedral Lithium-containing Fullerenes

Abstract

Molecular dynamics simulations have been carried out to understand the mechanism of encapsulating the Li atom into the C60 cage. The results suggest that when Li+ collides at the center of the 6-membered rings of \({{\text{C}}_{60}}^{ - }\), the Li+ ion passes through the 6-membered rings and becomes trapped in the C60 cage. From the early period of endohedral metallofullerenes research, structural optimization of Li@C60 was performed and its electronic structures were investigated. In these theoretical studies, various calculation conditions such as a kind of inner ion were changed to understand this material further. Theoretical calculations predicted some properties of Li+@C60, such as an upfield chemical shift in 7Li NMR and absorption in the terahertz region due to the motion of the inner Li+. The interactions of Li+@C60 with nucleobases, corannulene, and [10]cycloparaphenylene were examined in computational studies to estimate the binding characteristics in these complexes. The Diels–Alder reaction of Li+@C60 with cyclopentadiene was studied by density functional theory calculations, suggesting roles of various inner ions and counter anions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wan Z, Christian JF, Anderson SL (1992) Collision of Li+ and Na+ with C60: insertion, fragmentation, and thermionic emission. Phys Rev Lett 69:1352–1355

    Article  CAS  Google Scholar 

  2. Wan Z, Christian JF, Basir Y, Anderson SL (1993) Collision of alkali ions with C60/C70: Insertion, thermionic emission, and fragmentation. J Chem Phys 99:5858–5870. doi:10.1063/1.465939

    Article  CAS  Google Scholar 

  3. Kaplan T, Rasolt M, Karimi M, Mostoller M (1993) Numerical simulation of He+ and Li+ collisions with C60 fullerene. J Phys Chem 97:6124–6126. doi:10.1021/j100125a007

    Article  CAS  Google Scholar 

  4. Ohno K, Maruyama Y, Esfarjani K, Kawazoe Y, Sato N, Hatakeyama R, Hirata T, Niwano M (1996) Ab initio molecular dynamics simulations for collision between C60 and alkali-metal ions: a possibility of Li@C60. Phys Rev Lett 76:3590–3593. doi:10.1103/PhysRevLett.76.3590

    Article  CAS  Google Scholar 

  5. Dunlap BI, Ballester JL, Schmidt PP (1992) Interactions between fullerene (C60) and endohedral alkali atoms. J Phys Chem 96:9781–9787. doi:10.1021/j100203a038

    Article  CAS  Google Scholar 

  6. Tománek D, Li YS (1995) Ionicity of the MC60 bond in M@C60 endohedral complexes. Chem Phys Lett 243:42–44. doi:10.1016/0009-2614(95)00839-v

    Article  Google Scholar 

  7. Zhu C-B, Yan J-M (1996) Investigation of interaction in C60 embedded complexes (X@C60) (X = alkali or halogen) at a series of radial positions by Buckingham potential function. J Comput Chem 17:1624–1632

    Article  CAS  Google Scholar 

  8. Buckingham AD, Read JP (1996) Degeneracy loss contributions to the stabilisation of the eccentric position of lithium in Li@C60. Chem Phys Lett 253:414–419. doi:10.1016/0009-2614(96)00257-6

    Article  CAS  Google Scholar 

  9. Aree T, Kerdcharoen T, Hannongbua S (1998) Charge transfer, polarizability and stability of Li–C60 complexes. Chem Phys Lett 285:221–225. doi:10.1016/s0009-2614(98)00031-1

    Article  CAS  Google Scholar 

  10. Delaney P, Greer JC (2004) C60 as a Faraday cage. Appl Phys Lett 84:431–433. doi:10.1063/1.1640783

    Article  CAS  Google Scholar 

  11. Pavanello M, Jalbout AF, Trzaskowski B, Adamowicz L (2007) Fullerene as an electron buffer: charge transfer in Li@C60. Chem Phys Lett 442:339–343. doi:10.1016/j.cplett.2007.05.096

    Article  CAS  Google Scholar 

  12. Slanina Z, Uhlík F, Lee S-L, Adamowicz L, Nagase S (2008) MPWB1 K calculations of stepwise encapsulations: Lix@C60. Chem Phys Lett 463:121–123. doi:10.1016/j.cplett.2008.07.105

    Article  CAS  Google Scholar 

  13. Ramachandran CN, Roy D, Sathyamurthy N (2008) Host–guest interaction in endohedral fullerenes. Chem Phys Lett 461:87–92. doi:10.1016/j.cplett.2008.06.073

    Article  CAS  Google Scholar 

  14. Zhang M, Harding LB, Gray SK, Rice SA (2008) Quantum states of the endohedral fullerene Li@C60. J Phys Chem A 112:5478–5485. doi:10.1021/jp801083m

    Article  CAS  Google Scholar 

  15. Sadlej-Sosnowska N, Mazurek AP (2013) Distribution of electron density in charged Li@C60 complexes. Chem Phys Lett 580:53–56. doi:10.1016/j.cplett.2013.06.028

    Article  CAS  Google Scholar 

  16. Noguchi Y, Sugino O, Okada H, Matsuo Y (2013) First-principles investigation on structural and optical properties of M+@C60 (where M = H, Li, Na, and K). J Phys Chem C 117:15362–15368. doi:10.1021/jp4041259

    Article  CAS  Google Scholar 

  17. Cuestas E, Serra P (2016) Localization of the valence electron of endohedrally confined hydrogen, lithium and sodium in fullerene cages. Int J Mod Phys B 30:1650055. doi:10.1142/s0217979216500557

    Article  CAS  Google Scholar 

  18. Srivastava AK, Pandey SK, Misra N (2016) Encapsulation of lawrencium into C60 fullerene: Lr@C60 versus Li@C60. Mater Chem Phys 177:437–441. doi:10.1016/j.matchemphys.2016.04.050

    Article  CAS  Google Scholar 

  19. Gao FW, Zhong RL, Sun SL, Xu HL, Zhao L, Su ZM (2015) Charge transfer and first hyperpolarizability: cage-like radicals C59X and lithium encapsulated Li@C59X (X = B, N). J Mol Model 21:258. doi:10.1007/s00894-015-2808-9

    Article  Google Scholar 

  20. Bühl M, Thiel W, Jiao H, Paul V, Schleyer R, Saunders S, Frank AL (1994) Helium and lithium NMR chemical shifts of endohedral fullerene compounds: an ab Initio Study. J Am Chem Soc 116:6005–6006. doi:10.1021/ja00092a076

    Article  Google Scholar 

  21. Joslin CG, Yang J, Gray CG, Goldman S, Poll JD (1993) Infrared rotation and vibration—rotation bands of endohedral fullerene complexes. Absorption spectrum of Li+@C60 in the range 1–1000 cm−1. Chem Phys Lett 208:86–92. doi:10.1016/0009-2614(93)80081-y

    Article  CAS  Google Scholar 

  22. Hernández-Rojas J, Bretón J, Llorente JMG (1995) On the rotational spectra of endohedral atoms at fullerenes: the off-centre case. Chem Phys Lett 237:115–122. doi:10.1016/0009-2614(95)00244-x

    Article  Google Scholar 

  23. Hernández-Rojas J, Bretón J, Llorente JMG (1996) Rotational spectra for off-center endohedral atoms at C60 fullerene. J Chem Phys 104:1179–1186. doi:10.1063/1.47077

    Article  Google Scholar 

  24. Hernández-Rojas J, Bretón J, Llorente JMG (1996) Raman rotational spectra of endohedral C60 fullerene complexes. J Chem Phys 105:4482–4487. doi:10.1063/1.472299

    Article  Google Scholar 

  25. Hernández-Rojas J, Bretón J, Llorente JMG (1997) Rotational dynamics of endohedral C60 fullerene complexes. J Phys Chem Solids 58:1689–1696. doi:10.1016/s0022-3697(97)00053-x

    Article  Google Scholar 

  26. Hernández-Rojas J, Ruiz A, Bretón J, Llorente GJM (1997) Free and hindered rotations in endohedral C60 fullerene complexes. Int J Quantum Chem 65:655–663

    Article  Google Scholar 

  27. Varganov SA, Avramov PV, Ovchinnikov SG (2000) Ab initio calculations of endo-and exohedral C60 fullerene complexes with Li+ ion and the endohedral C60 fullerene complex with Li2 dimer. Phys Solid State 42:388–392. doi:10.1134/1.1131218

    Article  CAS  Google Scholar 

  28. Baltenkov AS, Dolmatov VK, Manson ST, Msezane AZ, Pikhut VA (2003) Trends in near-threshold photoionization of off-the-center endohedral atoms. Phys Rev A. doi:10.1103/PhysRevA.68.043202

    Google Scholar 

  29. Ludlow JA, Lee T-G, Pindzola MS (2010) Double photoionization of atoms and ions confined in charged fullerenes. J Phys B 43:235202. doi:10.1088/0953-4075/43/23/235202

    Article  Google Scholar 

  30. Lin CY, Ho YK (2012) Photoionization of atoms encapsulated by cages using the power-exponential potential. J Phys B 45:145001. doi:10.1088/0953-4075/45/14/145001

    Article  Google Scholar 

  31. Reis H, Loboda O, Avramopoulos A, Papadopoulos MG, Kirtman B, Luis JM, Zalesny R (2011) Electronic and vibrational linear and nonlinear polarizabilities of Li@C60 and [Li@C60]+. J Comput Chem 32:908–914. doi:10.1002/jcc.21674

    Article  CAS  Google Scholar 

  32. Jorn R, Zhao J, Petek H, Seideman T (2011) Current-driven dynamics in molecular junctions: endohedral fullerenes. ACS Nano 5:7858–7865. doi:10.1021/nn202589p

    Article  CAS  Google Scholar 

  33. Liu Z (2007) Clustering of molecular hydrogen anion (H3 ) on a Li+@C60 surface. Int J Hydrogen Energy 32:3987–3989. doi:10.1016/j.ijhydene.2007.03.025

    Article  CAS  Google Scholar 

  34. Jalbout AF (2008) Li@C60 complexes with amino acids: a theoretical analysis. J Organomet Chem 693:1143–1149. doi:10.1016/j.jorganchem.2008.01.008

    Article  CAS  Google Scholar 

  35. Sun W, Bu Y, Wang Y (2012) Interaction and protection mechanism between Li@C60 and nucleic acid bases (NABs): performance of PM6-DH2 on noncovalent interaction of NABs-Li@C60. J Comput Chem 33:490–501. doi:10.1002/jcc.22881

    Article  CAS  Google Scholar 

  36. Song YD, Wang L, Wu LM, Chen QL, Liu FK, Tang XW (2016) The encapsulated lithium effect on the first hyperpolarizability of C60Cl2 and C60F2. J Mol Model 22:50. doi:10.1007/s00894-016-2918-z

    Article  Google Scholar 

  37. Wang L-J, Sun S-L, Zhong R-L, Liu Y, Wang D-L, Wu H-Q, Xu H-L, Pan X-M, Su Z-M (2013) The encapsulated lithium effect of Li@C60Cl8 remarkably enhances the static first hyperpolarizability. RSC Adv 3:13348. doi:10.1039/c3ra40909k

    Article  CAS  Google Scholar 

  38. Denis PA (2012) Chemical reactivity of lithium-doped fullerenes. J Phys Org Chem 25:322–326. doi:10.1002/poc.1918

    Article  CAS  Google Scholar 

  39. Salehzadeh S, Yaghoobi F, Bayat M (2014) Theoretical studies on the interaction of some endohedral fullerenes [X@C60] (X=F, Cl, Br) or [M@C60] (M=Li, Na, K) with [Al(H2O)6]3+ and [Mg(H2O)6]2+ cations. Comput. Theor. Chem. 1034:73–79. doi:10.1016/j.comptc.2014.01.033

  40. Wang S-J, Li Y, Wang Y-F, Wu D, Lia Z-R (2013) Structures and nonlinear optical properties of the endohedral metallofullerene-superhalogen compounds Li@C60–BX4 (X=F, Cl, Br). Phys Chem Chem Phys 15:12903–12910. doi:10.1039/c3cp51443a

    Article  CAS  Google Scholar 

  41. Wang L, Wang W-Y, Qiu Y-Q, Lu H-Z (2015) Second-order nonlinear optical response of electron donor-acceptor hybrids formed between corannulene and metallofullerenes. J Phys Chem C 119:24965–24975. doi:10.1021/acs.jpcc.5b06870

    Article  CAS  Google Scholar 

  42. Rehman HU, McKee NA, McKee ML (2016) Saturn systems. J Comput Chem 37:194–209. doi:10.1002/jcc.23979

    Article  Google Scholar 

  43. Cui CX, Liu YJ (2015) Role of encapsulated metal cation in the reactivity and regioselectivity of the C60 Diels–Alder reaction. J Phys Chem A 119:3098–3106. doi:10.1021/acs.jpca.5b00194

    Article  CAS  Google Scholar 

  44. Zhang D, Li H, Wang H, Li L (2016) Counter anion in Li+-encapsulated C60 can further enhance the rate of Diels–Alder reaction: A DFT study. Int J Quantum Chem 116:1846–1850. doi:10.1002/qua.25283

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutaka Matsuo .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd

About this chapter

Cite this chapter

Matsuo, Y., Okada, H., Ueno, H. (2017). Computational Studies of Li@C60 . In: Endohedral Lithium-containing Fullerenes. Springer, Singapore. https://doi.org/10.1007/978-981-10-5004-6_8

Download citation

Publish with us

Policies and ethics