Advertisement

Dynamics of Soft-Matter Quasicrystals with 12-Fold Symmetry

Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 260)

Abstract

The discussion in the first six chapters provides a preparation for the subsequent study, the aim is to explore the structures and properties of soft-matter quasicrystals.

References

  1. 1.
    T.Y. Fan, Equation system of generalized hydrodynamics of soft-matter quasicrystals. Appl. Math. Mech. 37(4), 331–347 (2016)MathSciNetGoogle Scholar
  2. 2.
    T.Y. Fan, Generalized hydrodynamics of second two-dimensional soft-matter quasicrystals. Appl. Math. Mech. 38(2), 189–199 (2017)Google Scholar
  3. 3.
    T.Y. Fan, and Z.Y. Tang,Three-dimensional hydrodynamics of soft-matter quasicrystals. Appl. Math. Mech. 38 (2017) (to be published)Google Scholar
  4. 4.
    X. Zeng, G. Ungar, Y. Liu, V. Percec, A.E. DUlcey, J.K. Hobbs, Supermolecular dentritic liquid quasicrystals. Nature 428, 157–160 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    K. Takano, A mesoscopic Archimedian tiling having a complexity in polymeric stars. J. Polym. Sci. Pol. Phys. 43, 2427–2432 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    K. Hayashida, T. Dotera, A. Takano, Y. Matsushita, Polymeric quasicrystal: Mesoscopic quasicrystalline tiling in ABC star polymers. Phys. Rev. Lett. 98, 195502 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    V.D. Talapin, E.V. Shevechenko, M.I. Bodnarchuk, X.C. Ye, J. Chen, C.B. Murray, Quasicrystalline order in self-assembled binary nanoparticle superlattices. Nature 461, 964–967 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    S. Fischer, A. Exner, K. Zielske, J. Perlich, S. Deloudi, W. Steuer, P. Linder, S. Foestor, Colloidal quasicrystals with 12-fold and 18-fold symmetry. Proc. Nat. Ac. Sci. 108, 1810–1814 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    K. Yue, M.J. Huang, R. Marson, J.L. He, J.H. Huang, Z. Zhou, C. Liu, X.S. Yan, K. Wu, J. Wang, Z.H. Guo, H. Liu, W. Zhang, P.H. Ni, C. Wesdemiotis, W.-B. Zhang, W.B. Sharon, S.C. Glotzer, S.Z.D. Cheng, Geometry induced sequence of nanoscale Frank-Kasper and quasicrystal mesophases in giant surfactants. Proc. Nat. Ac. Sci. 113(50), 1392–1400 (2016)Google Scholar
  10. 10.
    T.C. Lubensky, S. Ramaswamy, J. Toner, Hydrodynamics of icosahedral quasicrystals. Phys. Rev. B 32(11), 7444–7452 (1985)ADSCrossRefGoogle Scholar
  11. 11.
    T.Y. Fan, Mathematical Theory of Elasticity of Quasicrystals and Its Applications (Science Press, Beijing/Springer-Verlag, Heidelberg, 1st edition, 2010; 2nd edition, 2016) (in which the more detailed discussion on symmetry groups of quasicrystals, refer to C.Z. Hu, R.H. Wang, D.H. Ding, Symmetry groups, physical constant tensors, elasticity and dislocations. Rep. Prog. Phys. 63(1), 1–39 (2000); the dislocation solution of phason field was obtained firstly by D.H. Ding, refer to S.H. Yang, D.H. Ding, Foundation of Theory of Crystal Dislocations, vol 2 (Science Press, Beijing, 1998), [in Chinese])Google Scholar
  12. 12.
    C.W. Oseen, Ueber die Stokes’sche Formel und ueber eine verwandte Aufgabe in der Hydrodynamik. Ark. Math. Astronom. Fys. 6(29), 1910Google Scholar
  13. 13.
    C.W. Oseen, Neuere Methoden und Ergibnisse in der Hydrodynamik (Akademische Verlagsgesellschaft, Leipzig, 1927)MATHGoogle Scholar
  14. 14.
    H. Cheng, T.Y. Fan, Z.Y. Tang, Flow of compressible viscous fluid past a circular cylinder. Unpublished workGoogle Scholar
  15. 15.
    H. Cheng, T.Y. Fan, Flow of soft-matter quasicrystals with 12-fold symmetry past a circular cylinder. Unpublished workGoogle Scholar
  16. 16.
    N.A. Sleozkin, Incompressible Viscous Fluid Dynamics (Gostehizdat Press, Moscow, 1959). (in Russian)Google Scholar
  17. 17.
    N.E. Kochin, I.A. Kibel’i, N.V. Roze, Theoretical Hydrodynamics (Government Press of Phys-Math Literature, Moscow, 1953). (in Russian)Google Scholar
  18. 18.
    Z.Y. Tang, T.Y. Fan, H. Cheng, Flow of 12-fold symmetry quasicrystals of soft matter past a sphere (2017) (unpublished work)Google Scholar
  19. 19.
    W. Brostow, A.M. Cunha, J. Quintanila, R. Simoes, Crack formation and propagation of polymer-liquid crystals. Macromol. Theory Simul. 11(4), 308–312 (2002)CrossRefGoogle Scholar
  20. 20.
    T.Y. Fan, A model of crack in smectic A liquid crystals. Phil. Mag. Lett. 92(2), 153–158 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    T.Y. Fan, Z.Y. Tang, A model of crack based on dislocations in smectic A liquid crystals. Chin. Phys. B 20(10), 106103 (2014)Google Scholar
  22. 22.
    S. Bohn, L. Pauchard, Y. Couder, Hierarchical crack pattern as formed by successive domain divisions. I. Temporal and geometrical hierarchy. Phys. Rev. E 71, 046214 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    M.S. Tirumkudulu, Cracking in drying latex films. Langmuir 21, 4938–4948 (2005)CrossRefGoogle Scholar
  24. 24.
    H.N. Yow, M. Goikoetra, L. Goehring, A.F. Routh, Effect of film thickness and particle size on cracking stresses in drying latex films. J. Colloid Interface Sci. 352, 542–548 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    H.M. van der Kooij, J. Sprakel, Watching paint dry; more exciting than it seems. Soft Matter 11, 6353–6359 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    H. Cheng, T.Y. Fan, H.Y. Hu, Z.F. Sun, Is the crack opened or closed of soft-matter quasicrystals with 5- and 10-fold symmetry? Theo. Appl. Fract. Mech. (2017) (in reviewing)Google Scholar
  27. 27.
    H.H. Wensink, Equation of state of a dense columnar liquid crystal. Phys. Rev. Lett. 93, 157801 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    A. Metere, P. Oleynikov, M. Dzugutov, S. Lidin, A smectic quasicrystal. Soft Matter 12, 8869–8876 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. and Beijing Institution of Technology Press 2017

Authors and Affiliations

  1. 1.Beijing Institute of TechnologyBeijingChina

Personalised recommendations