Skip to main content

Spectral Methods in the Theory of Wave Propagation

  • Chapter
  • First Online:

Part of the book series: Foundations of Engineering Mechanics ((FOUNDATIONS))

Abstract

This chapter deals with spectral methods in the theory of wave propagation. The main focus is given to the Fourier methods in application to studying the Stokes (gravity) waves on the surface of an inviscid fluid. A spectral method for calculating the limiting Stokes wave with a corner at the crest is considered as well. We also briefly consider the evolution of narrow-band wave trains on the surface of an ideal finite-depth fluid. Finally, a two-parameter method for describing the non-linear evolution of narrow-band wave trains is described by the example of the Klein–Gordon equation with a cubic nonlinearity. The problem is reduced to a high-order nonlinear Schrödinger equation for the complex amplitude of wave envelope. This equation is integrated numerically using a split-step Fourier technique to describe the evolution of quasi-solitons.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Benney, D.J., Newell, A.C.: The propagation of nonlinear wave envelopes. J. Math. Phys. 46, 133–139 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  2. Benney, D.J., Roskes, G.J.: Wave instabilities. Stud. Appl. Math. 48(4), 377–385 (1969)

    Article  MATH  Google Scholar 

  3. Bespalov, V., Talanov, V.: Filamentary structure of light beams in nonlinear liquids. JETP Lett. 3, 307–309 (1966)

    Google Scholar 

  4. Brinch-Nielsen, U., Jonsson, I.G.: Fourth-order evolution equations and stability analysis for Stokes waves on arbitrary water depth. Wave Motion 8, 455–472 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chappelear, J.E.: Direct numerical calculation of wave properties. J. Geophys. Res. 66(2), 501–508 (1961)

    Article  MathSciNet  Google Scholar 

  6. Chen, B., Saffman, P.G.: Numerical evidence for the existence of new types of gravity waves of permanent form on deep water. Stud. Appl. Math. 62, 1–21 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, M., Nash, J.M., Patton, C.E.: A numerical study of nonlinear Schrödinger equation solutions for microwave solitons in magnetic thin films. J. Appl. Phys. 73, 3906–3909 (1993)

    Article  Google Scholar 

  8. Clamond, D.: Steady finite-amplitude waves on a horizontal seabed of arbitrary depth. J. Fluid Mech. 398, 45–60 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Clamond, D.: Cnoidal-type surface waves in deep water. J. Fluid Mech. 489, 101–120 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cokelet, E.D.: Steep gravity waves in water of arbitrary uniform depth. Philos. Trans. R. Soc. Lond. A 286, 183–230 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  11. Craig, W., Guyenne, P., Sulem, C.: A Hamiltonian approach to nonlinear modulation of surface water waves. Wave Motion 47, 552–563 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Crutcher, S.H., Osei, A., Biswas, A.: Nonlinear evolution equations for surface plasmons for nano-focusing at a Kerr/metallic interface and tapered waveguide. Opt. Laser Technol. 44, 1156–1162 (2012)

    Article  Google Scholar 

  13. Dallaston, M.C., McCue, S.W.: Accurate series solutions for gravity-driven Stokes waves. Phys. Fluids 22, 082104 (2010)

    Article  MATH  Google Scholar 

  14. Davey, A., Stewartson, K.: On three-dimensional packets of surface waves. Proc. R. Soc. Lond. A 338, 101–110 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  15. Davies, T.V.: The theory of symmetrical gravity waves of finite amplitude. I. Proc. R. Soc. Lond. A 208, 475–486 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  16. De, S.C.: Contributions to the theory of Stokes waves. Proc. Camb. Philos. Soc. 51, 713–736 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  17. Debsarma, S., Das, K.P.: A higher-order nonlinear evolution equation for broader bandwidth gravity waves in deep water. Phys. Fluids 17, 104101 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dias, F., Kharif, C.: Nonlinear gravity and capillary-gravity waves. Annu. Rev. Fluid Mech. 31, 301–346 (1999)

    Article  MathSciNet  Google Scholar 

  19. Dodd, R.K., Eilbeck, J.C., Gibbon, J.D., Morris, H.C.: Solitons and Nonlinear Wave Equations. Academic Press, London (1984)

    MATH  Google Scholar 

  20. Dyachenko, A.I., Zakharov, V.E.: Compact equation for gravity waves on deep water. JETP Lett. 93(12), 701–705 (2011)

    Article  Google Scholar 

  21. Dyachenko, A.I., Zakharov, V.E.: A dynamic equation for water waves in one horizontal dimension. Eur. J. Mech. B Fluids 32, 17–21 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dyachenko, S.A., Lushnikov, P.M., Korotkevich, A.O.: Branch cuts of Stokes wave on deep water. Part I: numerical solution and Padé approximation. Stud. Appl. Math. 137(4), 419–472 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Dysthe, K.B.: Note on a modification to the nonlinear Schrödinger equation for application to deep water waves. Proc. R. Soc. Lond. A 369, 105–114 (1979)

    Article  MATH  Google Scholar 

  24. Gandzha, I.S., Lukomsky, V.P.: On water waves with a corner at the crest. Proc. R. Soc. Lond. A 463, 1597–1614 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gandzha, I.S., Sedletsky, Y.V.: Bright and dark solitons on the surface of finite-depth fluid below the modulation instability threshold. Phys. Lett. A 381, 1784–1790 (2017)

    Google Scholar 

  26. Gandzha, I.S., Sedletsky, Yu.V., Dutykh, D.S.: High-order nonlinear Schrödinger equation for the envelope of slowly modulated gravity waves on the surface of finite-depth fluid and its quasi-soliton solutions. Ukr. J. Phys. 59(12), 1201–1215 (2014)

    Google Scholar 

  27. Garabedian, P.R.: Surface waves of finite depth. J. d’Analyse Mathématique 14, 161–169 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gramstad, O., Trulsen, K.: Hamiltonian form of the modified nonlinear Schrödinger equation for gravity waves on arbitrary depth. J. Fluid Mech. 670, 404–426 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Grant, M.A.: The singularity at the crest of a finite amplitude progressive Stokes wave. J. Fluid Mech. 59, 257–262 (1973)

    Article  MATH  Google Scholar 

  30. Hamming, R.W.: Numerical Methods for Scientists and Engineers. McGraw-Hill, New York (1973)

    MATH  Google Scholar 

  31. Hasimoto, H., Ono, H.: Nonlinear modulation of gravity waves. J. Phys. Soc. Jpn. 33, 805–811 (1972)

    Article  Google Scholar 

  32. Havelock, T.H.: Periodic irrotational waves of finite height. Proc. R. Soc. Lond. A 95, 38–51 (1918)

    Article  MATH  Google Scholar 

  33. Hogan, S.J.: The potential form of the fourth-order evolution equation for deep-water gravity-capillary waves. Phys. Fluids 29, 3479–3480 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  34. Infeld, E., Rowlands, G.: Nonlinear Waves. Solitons and Chaos. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  35. Janssen, P.A.E.M.: On a fourth-order envelope equation for deep-water waves. J. Fluid Mech. 126, 1–11 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  36. Johnson, R.S.: On the modulation of water waves in the neighbourhood of \(kh\approx 1.363\). Proc. R. Soc. Lond. A 357, 131–141 (1977)

    Google Scholar 

  37. Kakutani, T., Michihiro, K.: Marginal state of modulational instability—Note on Benjamin-Feir instability. J. Phys. Soc. Jpn. 52, 4129–4137 (1983)

    Google Scholar 

  38. Karabut, E.A.: An approximation for the highest gravity waves on water of finite depth. J. Fluid Mech. 372, 45–70 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lamb, H.: Hydrodynamics. Dover Publications, New York (1945)

    MATH  Google Scholar 

  40. Landau, L.D., Lifshitz, E.M.: Course of theoretical physics. Fluid Mechanics, vol. 6. Pergamon Press, Oxford (1959)

    Google Scholar 

  41. Levi-Cività, T.: Détermination rigoureuse des ondes permanentes d’ampleur finie. Math. Ann. 93, 264–314 (1925)

    Article  MathSciNet  MATH  Google Scholar 

  42. Loitsyanskii, L.G.: Mekhanika zhidkosti i gaza (Fluid and Gas Mechanics). Nauka, Moscow (1987)

    Google Scholar 

  43. Longuet-Higgins, M.S.: Integral properties of periodic gravity waves of finite amplitude. Proc. R. Soc. Lond. A 342, 157–174 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  44. Longuet-Higgins, M.S.: Some new relations between Stokes’s coefficients in the theory of gravity waves. J. Inst. Math. Appl. 22, 261–273 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  45. Longuet-Higgins, M.S.: New integral relations for gravity waves of finite amplitude. J. Fluid Mech. 149, 205–215 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  46. Longuet-Higgins, M.S.: Bifurcation in gravity waves. J. Fluid Mech. 151, 457–475 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  47. Longuet-Higgins, M.S.: Lagrangian moments and mass transport in Stokes waves Part 2. Water of finite depth. J. Fluid Mech. 186, 321–336 (1988)

    Article  MATH  Google Scholar 

  48. Longuet-Higgins, M.S.: On an approximation to the limiting Stokes wave in deep water. Wave Motion 45, 770–775 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  49. Longuet-Higgins, M.S., Fox, M.J.H.: Theory of the almost-highest wave: the inner solution. J. Fluid Mech. 80(4), 721–741 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  50. Longuet-Higgins, M.S., Fox, M.J.H.: Theory of the almost-highest wave. Part 2. Matching and analytic extension. J. Fluid Mech. 85(4), 769–786 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  51. Longuet-Higgins, M.S., Fox, M.J.H.: Asymptotic theory for the almost-highest solitary wave. J. Fluid Mech. 317, 1–19 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  52. Lukomskiĭ, V.P.: Modulational instability of gravity waves in deep water with allowance for nonlinear dispersion. JETP 81(2), 306–310 (1995)

    Google Scholar 

  53. Lukomsky, V.P., Gandzha, I.S., Lukomsky, D.V.: Computational analysis of the almost-highest waves on deep water. Comput. Phys. Commun. 147(1–2), 548–551 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  54. Lukomsky, V.P., Gandzha, I.S., Lukomsky, D.V.: Steep sharp-crested gravity waves on deep water. Phys. Rev. Lett. 89(16), 164502 (2002)

    Article  MATH  Google Scholar 

  55. Lukomsky, V.P., Gandzha, I.S.: Fractional Fourier approximations for potential gravity waves on deep water. Nonlinear Processes in Geophysics 10(6), 599–614 (2003)

    Article  Google Scholar 

  56. Lukomsky, V.P., Gandzha, I.S.: Two-parameter method for describing the nonlinear evolution of narrow-band wave trains. Ukr. J. Phys. 54(1–2), 207–215 (2009)

    Google Scholar 

  57. Lushnikov, P.M., Dyachenko, S.A., Silantyev, D.A.: New Conformal Mapping for Adaptive Resolving of the Complex Singularities of Stokes Wave (2017). arXiv:1703.06343v1

  58. Maklakov, D.V.: Almost-highest gravity waves on water of finite depth. Euro. J. Appl. Math. 13, 67–93 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  59. McCormick, M.: Ocean Wave Energy Conversion. Wiley, New York (1981)

    Google Scholar 

  60. McLean, J.W.: Instabilities of finite-amplitude gravity waves on water of finite depth. J. Fluid Mech. 114, 331–341 (1982)

    Article  MATH  Google Scholar 

  61. Michell, J.H.: The highest waves in water. Philos. Mag. 5(36), 430–437 (1893)

    Article  MATH  Google Scholar 

  62. Muslu, G.M., Erbay, H.A.: Higher-order split-step Fourier schemes for the generalized nonlinear Schrödinger equation. Math. Comput. Simul. 67, 581–595 (2005)

    Article  MATH  Google Scholar 

  63. Nekrasov, A.I.: O volne Stoksa (On the Stokes wave). Izv. Ivanovo-Voznesensk. Politekhn. Inst. 2, 81–89 (1919)

    Google Scholar 

  64. Norman, A.C.: Expansions for the shape of maximum amplitude Stokes waves. J. Fluid Mech. 66, 261–265 (1974)

    Article  MATH  Google Scholar 

  65. Olfe, D.B., Rottman, J.W.: Some new highest-wave solutions for deep-water waves of permanent form. J. Fluid Mech. 100(4), 801–810 (1980)

    Article  MATH  Google Scholar 

  66. Onorato, M., Residori, S., Bortolozzo, U., Montina, A., Arecchi, F.T.: Rogue waves and their generating mechanisms in different physical contexts. Phys. Rep. 528(2), 47–89 (2013)

    Article  MathSciNet  Google Scholar 

  67. Parkes, E.J.: The modulation of wealkly non-linear dispersive waves near the marginal state of instability. J. Phys. A: Math. Gen. 20, 2025–2036 (1987)

    Article  Google Scholar 

  68. Rayleigh, Lord: On waves. Philos. Mag. 5(1), 257–279 (1876)

    MATH  Google Scholar 

  69. Rienecker, M.M., Fenton, J.D.: A Fourier approximation method for steady water waves. J. Fluid Mech. 104, 119–137 (1981)

    Article  MATH  Google Scholar 

  70. Saffman, P.G.: Long wavelength bifurcation of gravity waves on deep water. J. Fluid Mech. 101(3), 567–581 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  71. Sasaki, K., Murakami, T.: Irrotational progressive surface gravity waves near the limiting height. J. Ocean. Soc. Jpn. 29, 94–105 (1973)

    Article  Google Scholar 

  72. Schwartz, L.W.: Computer extension and analytic continuation of Stokes’ expansion for gravity waves. J. Fluid Mech. 62(3), 553–578 (1974)

    Article  MATH  Google Scholar 

  73. Schwartz, L.W., Fenton, J.D.: Strongly nonlinear waves. Ann. Rev. Fluid Mech. 14, 39–60 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  74. Sclavounos, P.D.: Wave energy density and flux. In: MIT Lecture Open Course in Mechanical Engineering No. 2.24 Ocean wave interaction with ships and offshore energy systems. http://ocw.mit.edu/courses/mechanical-engineering/2-24-ocean-wave-interaction-with-ships-and-offshore-energy-systems-13-022-spring-2002/lecture-notes/lecture4.pdf (2002). Assessed 27 Mar 2017

  75. Sedletsky, Yu.V.: Higher order nonlinear Schrödinger equation for Stokes waves on the surface of a water layer of arbitrary depth. Ukr. J. Phys. 48(1), 82–95 (2003)

    Google Scholar 

  76. Sedletsky, Yu.V.: The fourth-order nonlinear Schrödinger equation for the envelope of Stokes waves on the surface of a finite-depth fluid. JETP 97(1), 180–193 (2003)

    Google Scholar 

  77. Sedletsky, Yu.V.: Variational approach to the derivation of the Davey–Stewartson system. Fluid Dyn. Res. 48, 015506 (2016)

    Google Scholar 

  78. Slunyaev, A.V.: A high-order nonlinear envelope equation for gravity waves in finite-depth water. JETP 101, 926–941 (2005)

    Article  Google Scholar 

  79. Stoker, J.J.: Water Waves: the Mathematical Theory with Applications. Wiley, New York (1992)

    Book  MATH  Google Scholar 

  80. Stokes, G.G.: On the theory of oscillatory waves. Camb. Phil. Soc. Trans. 8, 441–455 (1847)

    Google Scholar 

  81. Stokes, G.G.: Supplement to a paper on the theory of oscillatory waves. Math. Phys. Pap. 1, 314–326 (1880)

    Google Scholar 

  82. Stokes, G.G.: Considerations relative to the greatest height of oscillatory irrotational waves which can be propagated whithout change of form. Math. Phys. Pap. 1, 225–228 (1880)

    Google Scholar 

  83. Strang, G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5(3), 506–517 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  84. Sveshnikov, A.G., Tikhonov, A.N.: Teoriya funktsii kompleksnoi peremennoi (The Theory of Functions of a Complex Variable). Nauka, Moscow (1979)

    MATH  Google Scholar 

  85. Tanaka, M.: The stability of steep gravity waves. J. Phys. Soc. Jpn. 52(9), 3047–3055 (1983)

    Article  Google Scholar 

  86. Tanaka, M.: The stability of solitary waves. Phys. Fluids 29(3), 650–655 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  87. Tanaka, M.: A method of calculation of periodic steady waves in water of finite depth: the manual to the program Stokes_finite.f (1996)

    Google Scholar 

  88. Tao, L., Song, H., Chakrabarti, S.: Nonlinear progressive waves in water of finite depth–an analytic approximation. Coast. Eng. 54, 825–834 (2007)

    Google Scholar 

  89. Trulsen, K., Dysthe, K.B.: A modified nonlinear Schrödinger equation for broader bandwidth gravity waves on deep water. Wave Motion 24, 281–289 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  90. Trulsen, K., Kliakhandler, I., Dysthe, K.B., Velarde, M.G.: On weakly nonlinear modulation of waves on deep water. Phys. Fluids 12(10), 2432–2437 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  91. Turitsyn, S.K., Bale, B.G., Fedoruk, M.P.: Dispersion-managed solitons in fibre systems and lasers. Phys. Rep. 521, 135–203 (2012)

    Article  Google Scholar 

  92. Whitham, G.B.: Linear and Nonlinear Waves. Wiley, New York (1974)

    MATH  Google Scholar 

  93. Williams, J.M.: Limiting gravity waves in water of finite depth. Philos. Trans. R. Soc. Lond. A 302, 139–188 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  94. Wilton, J.R.: On deep water waves. Philos. Mag. 6(27), 385–394 (1914)

    Article  MATH  Google Scholar 

  95. Yamada, H.: Highest waves of permanent type on the surface of deep water. Rep. Res. Inst. Appl. Mech. Kyushu Univ. 5, 37–52 (1957)

    Google Scholar 

  96. Yamada, H., Shiotani, T.: On the highest water waves of permanent type. Bull. Disaster Prev. Res. Inst. Kyushu Univ. 18, 1–22 (1968)

    Google Scholar 

  97. Yoshida, H.: Construction of high order symplectic operators. Phys. Lett. A 150, 262–268 (1990)

    Article  MathSciNet  Google Scholar 

  98. Yuen, H.C., Lake, B.M.: Nonlinear deep water waves: theory and experiment. Phys. Fluids 18(8), 956–960 (1975)

    Article  MATH  Google Scholar 

  99. Zakharov, V.E.: Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. and Tech. Phys. 9(2), 190–194 (1968)

    Article  Google Scholar 

  100. Zakharov, V.E., Kuznetsov, E.A.: Solitons and collapses: two evolution scenarios of nonlinear wave systems. Physics-Uspekhi 55(6), 535–556 (2012)

    Article  Google Scholar 

  101. Zakharov, V.E., Ostrovsky, L.A.: Modulation instability: the beginning. Physica D 238, 540–548 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  102. Zakharov, V.E., Shabat, A.B.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP 34(1), 62–69 (1972)

    MathSciNet  Google Scholar 

  103. Zhao, H., Song, Zh., Li, L., Kong, J.: On the Fourier approximation method for steady water waves. Acta Oceanol. Sin. 33(5), 37–47 (2014)

    Google Scholar 

  104. Zufiria, J.A.: Non-symmetric gravity waves on water of infinite depth. J. Fluid Mech. 181, 17–39 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor T. Selezov .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Selezov, I.T., Kryvonos, Y.G., Gandzha, I.S. (2018). Spectral Methods in the Theory of Wave Propagation. In: Wave Propagation and Diffraction. Foundations of Engineering Mechanics. Springer, Singapore. https://doi.org/10.1007/978-981-10-4923-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4923-1_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4922-4

  • Online ISBN: 978-981-10-4923-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics