Abstract
A hybrid approach for hyperspectral image segmentation is presented in this paper. The contribution of the proposed work is in two folds. First, learning of the class posterior probability distributions with Quadratic Programming or joint probability distribution by employing sparse multinomial logistic regression (SMLR) model. Secondly, estimation of the dependencies using spatial information and edge information by minimum spanning forest rooted on markers by acquiring the information from the first step to segment the hyper spectral image using a Markov Random field segments. The particle swarm optimization (PSO) is performed based on the SMLR posterior probabilities to reduce the large number of training data set. The performance of the proposed approach is illustrated in a number of experimental comparisons with recently introduced hyperspectral image analysis methods using both simulated and real hyper spectral data sets of Mars.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Kirkland, L., Mustard, J., McAfee, J., Hapke, B., Ramsey, M.: Mars infrared spectroscopy: from theory and the laboratory to field observations (2002)
Murchie, S., et al.: Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO). J. Geophys. Res. 112(03), 1–57 (2007)
Villa, A.: Spectral unmixing for the classification of hyperspectral images at a finer spatial resolution. IEEE 5(3), 521–533 (2010)
Karchi, R.P., Nagesh B.K.: A review of spectral unmixing algorithms in the context of Mars dataset. Int. J. Latest Trends Eng. Technol. 55–60 (2013). Special Issue - IDEAS-2013
Yang, L., Yang, S., Jin, P., Zhang, R.: Semi-supervised hyperspectral image classification using spatio-spectral Laplacian support vector machine. IEEE Geosci. Remote Sens. Lett. 11(3), 651–655 (2014)
Borges, J.S., Bioucas-Dias, J.M., Marcal, A.R.S.: Bayesian hyperspectral image segmentation with discriminative class learning. IEEE Trans. Geosci. Remote Sens. 49(6), 2151–2164 (2011)
Villa, A., Benediktsson, J.A., Chanussot, J., Jutten, C.: Hyperspectral image classification with independent component discriminant analysis. IEEE Trans. Geosci. Remote Sens. 49(12), 4865–4876 (2011)
Mianji, F.A., Zhang, Y.: Robust hyperspectral classification using relevance vector machine. IEEE Trans. Geosci. Remote Sens. 49(6), 2100–2112 (2011)
Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and Statistics), 1st edn. Springer, New York (2007)
Li, J., Dias, J.M.B., Plaza, A.: Semi-supervised hyperspectral image classification using soft sparse multinomial logistic regression. IEEE Geosci. Remote Sens. Lett. 10(2), 318–322 (2013)
Gu, Y.F., Feng, K.: L1-graph semisupervised learning for hyperspectral image classification. In: IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, pp. 1401–1404 (2012)
Kim, W., Crawford, M.M.: Adaptive classification for hyperspectral image data using manifold regularization kernel machines. IEEE Trans. Geosci. Remote Sens. 48(11), 4110–4121 (2010)
Rajadell, O., Garca-Sevilla, P., Pla, F.: Spectral-spatial pixel characterization using Gabor filters for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 10(4), 860–864 (2013)
Fauvel, M., Tarabalka, Y., Benediktsson, J.A., Chanussot, J., Tilton, J.C.: Advances in spectral-spatial classification of hyperspectral images. Proc. IEEE 101(3), 652–675 (2013)
Melacci, S., Belkin, M.: Laplacian support vector machines trained in the primal. J. Mach. Learn. Res. 12(3), 1149–1184 (2011)
Paoli, A., Melgani, F., Pasolli, E.: Clustering of hyperspectral images based on multiobjective particle swarm optimization. IEEE Trans. Geosci. Remote Sens. 47(12), 4175–4188 (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Karchi, R.P., Nagesh, B.K. (2017). A Hybrid Approach for Hyper Spectral Image Segmentation Using SMLR and PSO Optimization. In: Santosh, K., Hangarge, M., Bevilacqua, V., Negi, A. (eds) Recent Trends in Image Processing and Pattern Recognition. RTIP2R 2016. Communications in Computer and Information Science, vol 709. Springer, Singapore. https://doi.org/10.1007/978-981-10-4859-3_24
Download citation
DOI: https://doi.org/10.1007/978-981-10-4859-3_24
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-10-4858-6
Online ISBN: 978-981-10-4859-3
eBook Packages: Computer ScienceComputer Science (R0)