Skip to main content

A Hybrid Approach for Hyper Spectral Image Segmentation Using SMLR and PSO Optimization

  • Conference paper
  • First Online:
Recent Trends in Image Processing and Pattern Recognition (RTIP2R 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 709))

  • 785 Accesses

Abstract

A hybrid approach for hyperspectral image segmentation is presented in this paper. The contribution of the proposed work is in two folds. First, learning of the class posterior probability distributions with Quadratic Programming or joint probability distribution by employing sparse multinomial logistic regression (SMLR) model. Secondly, estimation of the dependencies using spatial information and edge information by minimum spanning forest rooted on markers by acquiring the information from the first step to segment the hyper spectral image using a Markov Random field segments. The particle swarm optimization (PSO) is performed based on the SMLR posterior probabilities to reduce the large number of training data set. The performance of the proposed approach is illustrated in a number of experimental comparisons with recently introduced hyperspectral image analysis methods using both simulated and real hyper spectral data sets of Mars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kirkland, L., Mustard, J., McAfee, J., Hapke, B., Ramsey, M.: Mars infrared spectroscopy: from theory and the laboratory to field observations (2002)

    Google Scholar 

  2. Murchie, S., et al.: Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO). J. Geophys. Res. 112(03), 1–57 (2007)

    Google Scholar 

  3. Villa, A.: Spectral unmixing for the classification of hyperspectral images at a finer spatial resolution. IEEE 5(3), 521–533 (2010)

    Google Scholar 

  4. Karchi, R.P., Nagesh B.K.: A review of spectral unmixing algorithms in the context of Mars dataset. Int. J. Latest Trends Eng. Technol. 55–60 (2013). Special Issue - IDEAS-2013

    Google Scholar 

  5. http://pds-geosciences.wustl.edu/missions/mro/crism.htm

  6. Yang, L., Yang, S., Jin, P., Zhang, R.: Semi-supervised hyperspectral image classification using spatio-spectral Laplacian support vector machine. IEEE Geosci. Remote Sens. Lett. 11(3), 651–655 (2014)

    Article  Google Scholar 

  7. Borges, J.S., Bioucas-Dias, J.M., Marcal, A.R.S.: Bayesian hyperspectral image segmentation with discriminative class learning. IEEE Trans. Geosci. Remote Sens. 49(6), 2151–2164 (2011)

    Article  Google Scholar 

  8. Villa, A., Benediktsson, J.A., Chanussot, J., Jutten, C.: Hyperspectral image classification with independent component discriminant analysis. IEEE Trans. Geosci. Remote Sens. 49(12), 4865–4876 (2011)

    Article  Google Scholar 

  9. Mianji, F.A., Zhang, Y.: Robust hyperspectral classification using relevance vector machine. IEEE Trans. Geosci. Remote Sens. 49(6), 2100–2112 (2011)

    Article  Google Scholar 

  10. Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and Statistics), 1st edn. Springer, New York (2007)

    Google Scholar 

  11. Li, J., Dias, J.M.B., Plaza, A.: Semi-supervised hyperspectral image classification using soft sparse multinomial logistic regression. IEEE Geosci. Remote Sens. Lett. 10(2), 318–322 (2013)

    Article  Google Scholar 

  12. Gu, Y.F., Feng, K.: L1-graph semisupervised learning for hyperspectral image classification. In: IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, pp. 1401–1404 (2012)

    Google Scholar 

  13. Kim, W., Crawford, M.M.: Adaptive classification for hyperspectral image data using manifold regularization kernel machines. IEEE Trans. Geosci. Remote Sens. 48(11), 4110–4121 (2010)

    Google Scholar 

  14. Rajadell, O., Garca-Sevilla, P., Pla, F.: Spectral-spatial pixel characterization using Gabor filters for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 10(4), 860–864 (2013)

    Article  Google Scholar 

  15. Fauvel, M., Tarabalka, Y., Benediktsson, J.A., Chanussot, J., Tilton, J.C.: Advances in spectral-spatial classification of hyperspectral images. Proc. IEEE 101(3), 652–675 (2013)

    Article  Google Scholar 

  16. Melacci, S., Belkin, M.: Laplacian support vector machines trained in the primal. J. Mach. Learn. Res. 12(3), 1149–1184 (2011)

    MathSciNet  MATH  Google Scholar 

  17. Paoli, A., Melgani, F., Pasolli, E.: Clustering of hyperspectral images based on multiobjective particle swarm optimization. IEEE Trans. Geosci. Remote Sens. 47(12), 4175–4188 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashmi P. Karchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Karchi, R.P., Nagesh, B.K. (2017). A Hybrid Approach for Hyper Spectral Image Segmentation Using SMLR and PSO Optimization. In: Santosh, K., Hangarge, M., Bevilacqua, V., Negi, A. (eds) Recent Trends in Image Processing and Pattern Recognition. RTIP2R 2016. Communications in Computer and Information Science, vol 709. Springer, Singapore. https://doi.org/10.1007/978-981-10-4859-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4859-3_24

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4858-6

  • Online ISBN: 978-981-10-4859-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics