Advertisement

Local Metabolic Factors and Vasoactivity

  • Yuansheng Gao
Chapter

Abstract

The regulation of vasoreactivity by local metabolites is a key mechanism to ensure adequate blood flow so that adequate O2 are supplied for the needed tissues and metabolic wastes are timely removed. Many metabolic factors may participate in the regulation of vascular activity such as local Po2, Pco2, pH, K+, adenosine, and lactate. These metabolic factors affect vasoactivity either by directly acting on vascular smooth muscle cells (VSMCs) or by acting on the endothelial cells, resulting in altered cytosolic Ca2+ level and Ca2+ sensitivity of myofilaments in VSMCs and thus altered vasoactivity. For a metabolic factor to be involved, it must be released in a sufficient amount from the tissues and diffuse to the nearby vasculature. Since the formation and release profile of metabolic factors vary under different conditions, their relative importance in affecting vasoactivity varies under different conditions. Under most conditions there appears no single factor that is indispensable for the metabolic regulation of vasoactivity. More likely this process is regulated by multiple factors in a redundant manner. Such a concept is exemplified in exercise-induced vasodilatation in skeletal muscle.

Keywords

Oxygen Carbon dioxide pH Potassium Adenosine Lactate Exercise 

References

  1. Aalkjaer C, Hughes A (1991) Chloride and bicarbonate transport in rat resistance arteries. J Physiol 436:57–73CrossRefPubMedPubMedCentralGoogle Scholar
  2. Aalkjaer C, Boedtkjer E, Choi I, Lee S (2014) Cation-coupled bicarbonate transporters. Compr Physiol 4:1605–1637CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ballard HJ (2014) ATP and adenosine in the regulation of skeletal muscle blood flow during exercise. Sheng Li Xue Bao 66:67–78PubMedGoogle Scholar
  4. Baretella O, Xu A, Vanhoutte PM (2014) Acidosis prevents and alkalosis augments endothelium-dependent contractions in mouse arteries. Pflugers Arch 466:295–305CrossRefPubMedGoogle Scholar
  5. Berne RM (1963) Cardiac nucleotides in hypoxia: possible role in regulation of coronary blood flow. Am J Phys 204:317–322Google Scholar
  6. Berwick ZC, Payne GA, Lynch B, Dick GM, Sturek M, Tune JD (2010) Contribution of adenosine A2A and A2B receptors to ischemic coronary dilation: role of KV and KATP channels. Microcirculation 17:600–607CrossRefPubMedPubMedCentralGoogle Scholar
  7. Boedtkjer E, Aalkjaer C (2012) Intracellular pH in the resistance vasculature: regulation and functional implications. J Vasc Res 49:479–496CrossRefPubMedGoogle Scholar
  8. Boedtkjer E, Praetorius J, Aalkjaer C (2006) NBCn1 (slc4a7) mediates the na+-dependent bicarbonate transport important for regulation of intracellular pH in mouse vascular smooth muscle cells. Circ Res 98:515–523CrossRefPubMedGoogle Scholar
  9. Boedtkjer E, Praetorius J, Fuchtbauer EM, Aalkjaer C (2008) Antibody-independent localization of the electroneutral Na+-HCO3 cotransporter NBCn1 (slc4a7) in mice. Am J Phys Cell Physiol 294:C591–C603CrossRefGoogle Scholar
  10. Boedtkjer E, Praetorius J, Matchkov VV, Stankevicius E, Mogensen S, Füchtbauer AC, Simonsen U, Füchtbauer EM, Aalkjaer C (2011) Disruption of Na+,HCO3 cotransporter NBCn1 (slc4a7) inhibits NO-mediated vasorelaxation, smooth muscle Ca2+ sensitivity, and hypertension development in mice. Circulation 124:1819–1829CrossRefPubMedGoogle Scholar
  11. Boedtkjer E, Damkier HH, Aalkjaer C (2012) NHE1 knockout reduces blood pressure and arterial media/lumen ratio with no effect on resting pHi in the vascular wall. J Physiol 590:1895–1906CrossRefPubMedPubMedCentralGoogle Scholar
  12. Brooks GA (2016) Energy flux, lactate shuttling, mitochondrial dynamics, and hypoxia. Adv Exp Med Biol 903:439–455CrossRefPubMedGoogle Scholar
  13. Brosius FC III, Pisoni RL, Cao X, Deshmukh G, Yannoukakos D, Stuart-Tilley AK, Haller C, Alper SL (1997) AE anion exchanger mRNA and protein expression in vascular smooth muscle cells, aorta, and renal microvessels. Am J Phys 273:F1039–F1047Google Scholar
  14. Buckler KJ (2015) TASK channels in arterial chemoreceptors and their role in oxygen and acid sensing. Pflugers Arch 467:101310–101325CrossRefGoogle Scholar
  15. Calderón-Sánchez E, Fernández-Tenorio M, Ordóñez A, López-Barneo J, Ureña J (2009) Hypoxia inhibits vasoconstriction induced by metabotropic Ca2+ channel-induced Ca2+ release in mammalian coronary arteries. Cardiovasc Res 82:115–124CrossRefPubMedGoogle Scholar
  16. Chen YL, Wolin MS, Messina EJ (1996) Evidence for cGMP mediation of skeletal muscle arteriolar dilation to lactate. J Appl Physiol 81:349–354PubMedGoogle Scholar
  17. Chen JF, Eltzschig HK, Fredholm BB (2013) Adenosine receptors as drug targets--what are the challenges? Nat Rev Drug Discov 12:265–286CrossRefPubMedPubMedCentralGoogle Scholar
  18. Cheng B, Essackjee HC, Ballard HJ (2000) Evidence for control of adenosine metabolism in rat oxidative skeletal muscle by changes in pH. J Physiol 522:467–477CrossRefPubMedPubMedCentralGoogle Scholar
  19. Coburn RF, Moreland S, Moreland RS, Baron CB (1992) Rate-limiting energy-dependent steps controlling oxidative metabolism-contraction coupling in rabbit aorta. J Physiol 448:473–492CrossRefPubMedPubMedCentralGoogle Scholar
  20. Damkier HH, Nielsen S, Praetorius J (2006) An anti-NH2-terminal antibody localizes NBCn1 to heart endothelia and skeletal and vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 290:H172–H180CrossRefPubMedGoogle Scholar
  21. Detar R, Bohr DF (1968) Oxygen and vascular smooth muscle contraction. Am J Phys 214:241–244Google Scholar
  22. Deussen A, Ohanyan V, Jannasch A, Yin L, Chilian W (2012) Mechanisms of metabolic coronary flow regulation. J Mol Cell Cardiol 52:794–801CrossRefPubMedGoogle Scholar
  23. Dou D, Zheng X, Ying L, Ye L, Gao Y (2013) Sulfhydryl-dependent dimerization and cGMP-mediated vasodilatation. J Cardiovasc Pharmacol 62:1–5CrossRefPubMedGoogle Scholar
  24. Duncker DJ, Bache RJ (2008) Regulation of coronary blood flow during exercise. Physiol Rev 88:1009–1086CrossRefPubMedGoogle Scholar
  25. Edlund A, Sollevi A, Wennmalm A (1989) The role of adenosine and prostacyclin in coronary flow regulation in healthy man. Acta Physiol Scand 135:39–46CrossRefPubMedGoogle Scholar
  26. Fleming I, Hecker M, Busse R (1994) Intracellular alkalinization induced by bradykinin sustains activation of the constitutive nitric oxide synthase in endothelial cells. Circ Res 74:1220–1226CrossRefPubMedGoogle Scholar
  27. Frøbert O, Haink G, Simonsen U, Gravholt CH, Levin M, Deussen A (2006) Adenosine concentration in the porcine coronary artery wall and A2A receptor involvement in hypoxia-induced vasodilatation. J Physiol 570:375–384CrossRefPubMedGoogle Scholar
  28. Furchgott RF (1966) Metabolic factors that influence contractility of vascular smooth muscle. Bull N Y Acad Med 42:996–1006PubMedPubMedCentralGoogle Scholar
  29. Gebremedhin D, Yamaura K, Harder DR (2008) Role of 20-HETE in the hypoxia-induced activation of Ca2+-activated K+ channel currents in rat cerebral arterial muscle cells. Am J Physiol Heart Circ Physiol 294:H107–H120CrossRefPubMedGoogle Scholar
  30. Gerlach E, Deuticke B, Dreisbach RH (1963) Der Nucleotid-Abbau im Herzmuskel bei Sauerstoffmangel und seine mögliche Bedeutung für die Coronardurchblutung. Naturwissenschaften 50:228–229CrossRefGoogle Scholar
  31. Gnaiger E (2001) Bioenergetics at low oxygen: dependence of respiration and phosphorylation on oxygen and adenosine diphosphate supply. Respir Physiol 128:277–297CrossRefPubMedGoogle Scholar
  32. Halestrap AP (2012) The monocarboxylate transporter family-structure and functional characterization. IUBMB Life 64:1–9CrossRefPubMedGoogle Scholar
  33. Heaps CL, Bowles DK (2002) Gender-specific K+-channel contribution to adenosine-induced relaxation in coronary arterioles. J Appl Physiol 92:550–558CrossRefPubMedGoogle Scholar
  34. Hedegaard ER, Nielsen BD, Kun A, Hughes AD, Krøigaard C, Mogensen S, Matchkov VV, Fröbert O, Simonsen U (2014) KV7 channels are involved in hypoxia-induced vasodilatation of porcine coronary arteries. Br J Pharmacol 171:69–82CrossRefPubMedGoogle Scholar
  35. Hellsten Y (1999) The effect of muscle contraction on the regulation of adenosine formation in rat skeletal muscle cells. J Physiol 518:761–768CrossRefPubMedPubMedCentralGoogle Scholar
  36. Jones DP (1986) Intracellular diffusion gradients of O2 and ATP. Am J Phys Cell Physiol 250:C663–C675Google Scholar
  37. Joyner MJ, Casey DP (2015) Regulation of increased blood flow (hyperemia) to muscles during exercise: a hierarchy of competing physiological needs. Physiol Rev 95:549–601CrossRefPubMedPubMedCentralGoogle Scholar
  38. Katz A, Sahlin K (1988) Regulation of lactic acid production during exercise. J Appl Physiol 65:509–518PubMedGoogle Scholar
  39. Lamb IR, Murrant CL (2015) Potassium inhibits nitric oxide and adenosine arteriolar vasodilatation via KIR and Na+/K+ ATPase: implications for redundancy in active hyperaemia. J Physiol 593:5111–5126CrossRefPubMedPubMedCentralGoogle Scholar
  40. Leach RM, Sheehan DW, Chacko VP, Sylvester JT (2000) Energy state, pH, and vasomotor tone during hypoxia in precontracted pulmonary and femoral arteries. Am J Phys Lung Cell Mol Phys 278:L294–L304Google Scholar
  41. Lynge J, Hellsten Y (2000) Distribution of adenosine A1, A2A and A2B receptors in human skeletal muscle. Acta Physiol Scand 169:283–290CrossRefPubMedGoogle Scholar
  42. Marshall JM, Ray CJ (2012) Contribution of non-endothelium-dependent substances to exercise hyperaemia: are they O2 dependent? J Physiol 590:6307–6320CrossRefPubMedPubMedCentralGoogle Scholar
  43. Merkus D, Haitsma DB, Fung TY, Assen YJ, Verdouw PD, Duncker DJ (2003) Coronary blood flow regulation in exercising swine involves parallel rather than redundant vasodilator pathways. Am J Physiol Heart Circ Physiol 285:H424–H433CrossRefPubMedGoogle Scholar
  44. Montoya JJ, Fernández N, Monge L, Diéguez G, Villalón AL (2011) Nitric oxide-mediated relaxation to lactate of coronary circulation in the isolated perfused rat heart. J Cardiovasc Pharmacol 58:392–398CrossRefPubMedGoogle Scholar
  45. Mortensen SP, Gonzalez-Alonso J, Nielsen JJ, Saltin B, Hellsten Y (2009) Muscle interstitial ATP and norepinenphrine concentrations in the human leg during exercise and ATP infusion. J Appl Physiol 107:1757–1762CrossRefPubMedGoogle Scholar
  46. Neo BH, Kandhi S, Ahmad M, Wolin MS (2010) Redox regulation of guanylate cyclase and protein kinase G in vascular responses to hypoxia. Respir Physiol Neurobiol 174:259–264CrossRefPubMedPubMedCentralGoogle Scholar
  47. Ngo AT, Riemann M, Holstein-Rathlou NH, Torp-Pedersen C, Jensen LJ (2013) Significance of KATP channels, L-type Ca2+ channels and CYP450-4A enzymes in oxygen sensing in mouse cremaster muscle arterioles in vivo. BMC Physiol 13:8CrossRefPubMedPubMedCentralGoogle Scholar
  48. Nyberg M, Mortensen SP, Thaning P, Saltin B, Hellsten Y (2010) Interstitial and plasma adenosine stimulate nitric oxide and prostacyclin formation in human skeletal muscle. Hypertension 56:1102–1108CrossRefPubMedGoogle Scholar
  49. Occhipinti R, Boron WF (2015) Mathematical modeling of acid-base physiology. Prog Biophys Mol Biol 117(1):43–58CrossRefPubMedPubMedCentralGoogle Scholar
  50. Pittman RN, Duling BR (1973) Oxygen sensitivity of vascular smooth muscle. Microvasc Res 6:202–211CrossRefPubMedGoogle Scholar
  51. Pries AR, Secomb TW (2014) Making microvascular networks work: angiogenesis, remodeling, and pruning. Physiology (Bethesda) 29:446–455Google Scholar
  52. Saitoh S, Zhang C, Tune JD, Potter B, Kiyooka T, Rogers PA, Knudson JD, Dick GM, Swafford A, Chilian WM (2006) Hydrogen peroxide: a feed-forward dilator that couples myocardial metabolism to coronary blood flow. Arterioscler Thromb Vasc Biol 26:2614–2621CrossRefPubMedGoogle Scholar
  53. Sanjani MS, Teng B, Krahn T, Tilley S, Ledent C, Mustafa SJ (2011) Contributions of A2A and A2B adenosine receptors in coronary flow responses in relation to the KATP channel using A2B and A2A/2B double-knockout mice. Am J Physiol Heart Circ Physiol 301:H2322–H2333CrossRefPubMedPubMedCentralGoogle Scholar
  54. Sarelius I, Pohl U (2010) Control of muscle blood flow during exercise: local factors and integrative mechanisms. Acta Physiol (Oxford) 199:349–365CrossRefGoogle Scholar
  55. Schrage WG, Joyner MJ, Dinenno FA (2004) Local inhibition of nitric oxide and prostaglandins independently reduce forearm exercise hyperaemia in humans. J Physiol 557:599–611CrossRefPubMedPubMedCentralGoogle Scholar
  56. Schrage WG, Dietz NM, Joyner MJ (2006) Effects of combined inhibition of ATP-sensitive potassium channels, nitric oxide, and prostaglandins on hyperemia during moderate exercise. J Appl Physiol 100:1506–1512CrossRefPubMedGoogle Scholar
  57. Schumacker PT (2011) Lung cell hypoxia: role of mitochondrial reactive oxygen species signaling in triggering responses. Proc Am Thorac Soc 8:477–484CrossRefPubMedPubMedCentralGoogle Scholar
  58. Sharifi SM, Zhou X, Asano S, Tilley SL, Ledent C, Teng B, Dick GM, Mustafa SJ (2013) Interactions between A2A adenosine receptors, hydrogen peroxide, and KATP channels in coronary reactive hyperemia. Am J Physiol Heart Circ Physiol 304:H1294–H1301CrossRefGoogle Scholar
  59. Smani T, Hernandez A, Urena J, Castellano AG, Franco-Obregon A, Ordonez A, López-Barneo J (2002) Reduction of Ca2+ channel activity by hypoxia in human and porcine coronary myocytes. Cardiovasc Res 53:97–104CrossRefPubMedGoogle Scholar
  60. Sparks HV (2011) Effect of local metabolic factors on vascular smooth muscle. Compr Physiol Supplement 7: Handbook of Physiology, The Cardiovascular System, Vascular Smooth Muscle, pp 475–513Google Scholar
  61. Stowe DF (1981) Heart bioassay of effluent of isolated, perfused guinea pig hearts to examine the role of metabolites regulating coronary flow during hypoxia. Basic Res Cardiol 76:359–364CrossRefPubMedGoogle Scholar
  62. Sylvester JT, Shimoda LA, Aaronson PI, Ward JP (2012) Hypoxic pulmonary vasoconstriction. Physiol Rev 92:367–520CrossRefPubMedGoogle Scholar
  63. Tune JD, Richmond KN, Gorman MW, Feigl EO (2000) Role of nitric oxide and adenosine in control of coronary blood flow in exercising dogs. Circulation 101:2942–2948CrossRefPubMedGoogle Scholar
  64. Wang T, Sodhi J, Mentzer RM Jr, Van Wylen DG (1994) Changes in interstitial adenosine during hypoxia: relationship to oxygen supply: demand imbalance, and effects of adenosine deaminase. Cardiovasc Res 28:1320–1325CrossRefPubMedGoogle Scholar
  65. Wardle RL, Gu M, Ishida Y, Paul RJ (2007) Rho kinase is an effector underlying Ca2+-desensitizing hypoxic relaxation in porcine coronary artery. Am J Physiol Heart Circ Physiol 293:H23–H29CrossRefPubMedGoogle Scholar
  66. Weir EK, Archer SL (2010) The role of redox changes in oxygen sensing. Respir Physiol Neurobiol 174:182–191CrossRefPubMedPubMedCentralGoogle Scholar
  67. Zhou X, Teng B, Tilley S, Mustafa SJ (2013) A1 adenosine receptor negatively modulates coronary reactive hyperemia via counteracting A2A-mediated H2O2 production and KATP opening in isolated mouse hearts. Am J Physiol Heart Circ Physiol 305:H1668–H1679CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Yuansheng Gao
    • 1
  1. 1.Department of Physiology and PathophysiologyPeking University Health Science CenterBeijingChina

Personalised recommendations