Advertisement

Biochemistry of the Contractile Proteins of Smooth Muscle

  • Yuansheng Gao
Chapter

Abstract

Muscle contraction at the molecular level is a process named cross-bridge cycle or actomyosin ATPase cycle resulting from the interaction of myosin and actin. The conformational changes of myosin head after bound to actin transfer the chemical energy stored in ATP into the force or tension through the swing of myosin head on the actin filaments. The specific myosin heavy chain isoforms are the key determinants of the unique characteristics of cross-bridge cycle of smooth muscle including vascular smooth muscle. Differing from the striated muscle, the cross-bridge cycle and thus the force generation are mainly regulated by the phosphorylation of the regulatory myosin light chain (MLC20). The MLC20 isoforms as well as the latch state may contribute to different contractile responses between the tonic and phasic arteries.

Keywords

Cross-bridge cycle ATP Myosin heavy chain Myosin light chain Latch state 

References

  1. Bloemink MJ, Geeves MA (2011) Shaking the myosin family tree: biochemical kinetics defines four types of myosin motor. Semin Cell Dev Biol 22:961–967CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bloemink MJ, Melkani GC, Bernstein SI, Geeves MA (2016) The relay/converter interface influences hydrolysis of ATP by skeletal muscle myosin II. J Biol Chem 291:1763–1773CrossRefPubMedGoogle Scholar
  3. Call C, Han S, Speich JE, Eddinger TJ, Ratz PH (2006) Resistance to pressure-induced dilatation in femoral but not saphenous artery: physiological role of latch? Am J Physiol Heart Circ Physiol 291:H1513–H1520CrossRefPubMedGoogle Scholar
  4. Chi M, Zhou Y, Vedamoorthyrao S, Babu GJ, Periasamy M (2008) Ablation of smooth muscle myosin heavy chain SM2 increases smooth muscle contraction and results in postnatal death in mice. Proc Natl Acad Sci U S A 105:18614–18618CrossRefPubMedPubMedCentralGoogle Scholar
  5. Deacon JC, Bloemink MJ, Rezavandi H, Geeves MA, Leinwand LA (2012) Identification of functional differences between recombinant human α and β cardiac myosin motors. Cell Mol Life Sci 69:2261–2277CrossRefPubMedPubMedCentralGoogle Scholar
  6. De La Cruz EM, Ostap EM (2004) Relating biochemistry and function in the myosin superfamily. Curr Opin Cell Biol 16:61–67CrossRefGoogle Scholar
  7. Dillon PF, Aksoy MO, Driska SP, Murphy RA (1981) Myosin phosphorylation and the cross-bridge cycle in arterial smooth muscle. Science 211:495–497CrossRefPubMedGoogle Scholar
  8. DiSanto ME, Cox RH, Wang Z, Chacko S (1997) NH2-terminal-inserted myosin II heavy chain is expressed in smooth muscle of small muscular arteries. Am J Physiol Cell Physiol 272:C1532–C1542Google Scholar
  9. Eddinger TJ, Meer DP (2007) Myosin II isoforms in smooth muscle: heterogeneity and function. Am J Physiol Cell Physiol 293:C493–C508CrossRefPubMedGoogle Scholar
  10. El-Mezgueldi M (2014) Tropomyosin dynamics. J Muscle Res Cell Motil 35:203–210CrossRefPubMedGoogle Scholar
  11. Guhathakurta P, Prochniewicz E, Thomas DD (2015) Amplitude of the actomyosin power stroke depends strongly on the isoform of the myosin essential light chain. Proc Natl Acad Sci U S A 112:4660–4665CrossRefPubMedPubMedCentralGoogle Scholar
  12. Hai CM, Murphy RA (1988) Cross-bridge phosphorylation and regulation of latch state in smooth muscle. Am J Phys 254:C99–C106Google Scholar
  13. Han S, Speich JE, Eddinger TJ, Berg KM, Miner AS, Call C, Ratz PH (2006) Evidence for absence of latch-bridge formation in muscular saphenous arteries. Am J Physiol Heart Circ Physiol 291:H138–H146CrossRefPubMedGoogle Scholar
  14. Houdusse A, Sweeney HL (2001) Myosin motors: missing structures and hidden springs. Curr Opin Struct Biol 11:182–194CrossRefPubMedGoogle Scholar
  15. Huxley H, Hanson J (1954) Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature 173:973–976CrossRefPubMedGoogle Scholar
  16. Huxley AF, Niedergerke R (1954) Structural changes in muscle during contraction: interference microscopy of living muscle Fibres. Nature 173:971–973CrossRefPubMedGoogle Scholar
  17. Ikebe M, Hartshorne DJ, Elzinga M (1986) Identification, phosphorylation, and dephosphorylation of a second site for myosin light chain kinase on the 20,000-Dalton light chain of smooth muscle myosin. J Biol Chem 261:36–39PubMedGoogle Scholar
  18. Llinas P, Pylypenko O, Isabet T, Mukherjea M, Sweeney HL, Houdusse AM (2009) How myosin motors power cellular functions: an exciting journey from structure to function: based on a lecture delivered at the 34th FEBS congress in Prague, Czech Republic, July 2009. FEBS J 279:551–562CrossRefGoogle Scholar
  19. Llinas P, Isabet T, Song L, Ropars V, Zong B, Benisty H, Sirigu S, Morris C, Kikuti C, Safer D, Sweeney HL, Houdusse A (2015) How actin initiates the motor activity of myosin. Dev Cell 33:401–412CrossRefPubMedPubMedCentralGoogle Scholar
  20. Málnási-Csizmadia A, Kovács M (2010) Emerging complex pathways of the actomyosin power stroke. Trends Biochem Sci 35:684–690CrossRefPubMedPubMedCentralGoogle Scholar
  21. Månsson A, Rassier D, Tsiavaliaris G (2015) Poorly understood aspects of striated muscle contraction. Biomed Res Int 2015:245154CrossRefPubMedPubMedCentralGoogle Scholar
  22. Mehta A (2001) Myosin learns to walk. J Cell Sci 114:1981–1998PubMedGoogle Scholar
  23. Miller MS, Bedrin NG, Ades PA, Palmer BM, Toth MJ (2015) Molecular determinants of force production in human skeletal muscle fibers: effects of myosin isoform expression and cross-sectional area. Am J Physiol Cell Physiol 308:C473–C484CrossRefPubMedPubMedCentralGoogle Scholar
  24. Miyata S, Minobe W, Bristow MR, Leinwand LA (2000) Myosin heavy chain isoform expression in the failing and nonfailing human heart. Circ Res 86:386–390CrossRefPubMedGoogle Scholar
  25. Moran CM, Garriock RJ, Miller MK, Heimark RL, Gregorio CC, Krieg PA (2008) Expression of the fast twitch troponin complex, fTnT, fTnI and fTnC, in vascular smooth muscle. Cell Motil Cytoskeleton 65:652–661CrossRefPubMedPubMedCentralGoogle Scholar
  26. Murphy RA, Rembold CM (2005) The latch-bridge hypothesis of smooth muscle contraction. Can J Physiol Pharmacol 83:857–864CrossRefPubMedPubMedCentralGoogle Scholar
  27. Ni S, Hong F, Haldeman BD, Baker JE, Facemyer KC, Cremo CR (2012) Modification of interface between regulatory and essential light chains hampers phosphorylation-dependent activation of smooth muscle myosin. J Biol Chem 287:22068–22079CrossRefPubMedPubMedCentralGoogle Scholar
  28. Odronitz F, Kollmar M (2007) Drawing the tree of eukaryotic life based on the analysis of 2,269 manually annotated myosins from 328 species. Genome Biol 8:R196CrossRefPubMedPubMedCentralGoogle Scholar
  29. Petzhold D, Simsek B, Meißner R, Mahmoodzadeh S, Morano I (2014) Distinct interactions between actin and essential myosin light chain isoforms. Biochem Biophys Res Commun 449:284–288CrossRefPubMedGoogle Scholar
  30. Ratz PH (2015) Mechanics of vascular smooth muscle. Compr Physiol 6:111–168CrossRefPubMedGoogle Scholar
  31. Reggiani C, Bottinelli R, Stienen GJ (2000) Sarcomeric myosin isoforms: fine tuning of a molecular motor. News Physiol Sci 15:26–33PubMedGoogle Scholar
  32. Reho JJ, Zheng X, Fisher SA (2014) Smooth muscle contractile diversity in the control of regional circulations. Am J Physiol Heart Circ Physiol 306:H163–H172CrossRefPubMedGoogle Scholar
  33. Schiaffino S, Reggiani C (2011) Fiber types in mammalian skeletal muscles. Physiol Rev 91:1447–1531CrossRefPubMedGoogle Scholar
  34. Sebé-Pedrós A, Grau-Bové X, Richards TA, Ruiz-Trillo I (2014) Evolution and classification of myosins, a paneukaryotic whole-genome approach. Genome Biol Evol 6:290–305CrossRefPubMedPubMedCentralGoogle Scholar
  35. Singer HA, Murphy RA (1987) Maximal rates of activation in electrically stimulated swine carotid media. Circ Res 60:438–445CrossRefPubMedGoogle Scholar
  36. Sutherland C, Walsh MP (2012) Myosin regulatory light chain diphosphorylation slows relaxation of arterial smooth muscle. J Biol Chem 287:24064–24076CrossRefPubMedPubMedCentralGoogle Scholar
  37. Sweeney HL, Houdusse A (2010) Structural and functional insights into the myosin motor mechanism. Annu Rev Biophys 39:539–557CrossRefPubMedGoogle Scholar
  38. Taylor KA, Feig M, Brooks CL 3rd, Fagnant PM, Lowey S, Trybus KM (2014) Role of the essential light chain in the activation of smooth muscle myosin by regulatory light chain phosphorylation. J Struct Biol 185:375–382CrossRefPubMedGoogle Scholar
  39. Walker JS, Walker LA, Etter EF, Murphy RA (2000) A dilution immunoassay to measure myosin regulatory light chain phosphorylation. Anal Biochem 284:173–182CrossRefPubMedGoogle Scholar
  40. Walsh MP (2011) Vascular smooth muscle myosin light chain diphosphorylation: mechanism, function, and pathological implications. IUBMB Life 63:987–1000CrossRefPubMedGoogle Scholar
  41. Weiss A, Leinwand LA (1996) The mammalian myosin heavy chain gene family. Annu Rev Cell Dev Biol 12:417–439CrossRefPubMedGoogle Scholar
  42. Wendt T, Taylor D, Trybus KM, Taylor K (2001) Three dimensional image reconstruction of dephosphorylated smooth muscle heavy meromyosin reveals asymmetry in the interaction between myosin heads and placement of subfragment 2. Proc Natl Acad Sci U S A 98:4361–4366CrossRefPubMedPubMedCentralGoogle Scholar
  43. Wetzel U, Lutsch G, Haase H, Ganten U, Morano I (1998) Expression of smooth muscle myosin heavy chain B in cardiac vessels of normotensive and hypertensive rats. Circ Res 83:204–209CrossRefPubMedGoogle Scholar
  44. Wetzel K, Baltatu O, Nafz B, Persson PB, Haase H, Morano I (2003) Expression of smooth muscle MyHC B in blood vessels of hypertrophied heart in experimentally hypertensive rats. Am J Physiol Regul Integr Comp Physiol 284:R607–R610CrossRefPubMedGoogle Scholar
  45. Wu X, Clack BA, Zhi G, Stull JT, Cremo CR (1999) Phosphorylation-dependent structural changes in the regulatory light chain domain of smooth muscle heavy meromyosin. J Biol Chem 274:20328–20335CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Yuansheng Gao
    • 1
  1. 1.Department of Physiology and PathophysiologyPeking University Health Science CenterBeijingChina

Personalised recommendations