Ultrastructure of Vascular Smooth Muscle

  • Yuansheng Gao


Vascular smooth muscle, which is located in the tunica media layer of the vascular wall, is the primary player to enable the blood vessel to constrict and dilate. This is fulfilled by the interaction of thin and thick filaments of the contractile apparatus. These filaments in the smooth muscle are organized differently from striated muscle, termed side polar geometry. Such an arrangement gives the blood vessel high adaptational capacity in contractility. Several cell organelles including sarcoplasmic reticulum, mitochondria, caveolae, and cytoskeleton are indispensable for the contractile functionality, which are involved in the regulation of cytosol calcium level, ATP generation, signal transduction, and cell shape adaptation in response to the contractile status. In this chapter, the current understanding of the ultrastructural characteristics of these cellular components of vascular smooth muscle will be reviewed.


Actin Myosin Sarcoplasmic reticulum Mitochondria Caveolae Cytoskeleton 


  1. Amador FJ, Stathopulos PB, Enomoto M, Ikura M (2013) Ryanodine receptor calcium release channels: lessons from structure-function studies. FEBS J 280:5456–5470CrossRefPubMedGoogle Scholar
  2. Bednarek ML, Speich JE, Miner AS, Ratz PH (2011) Active tension adaptation at a shortened arterial muscle length: inhibition by cytochalasin-D. Am J Physiol Heart Circ Physiol 300:H1166–H1173CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bernatchez P, Sharma A, Bauer PM, Marin E, SessaWC (2011) A noninhibitory mutant of the caveolin-1scaffolding domain enhances NOS-derived NO synthesis and vasodilation in mice. J Clin Invest 121: 3747–3755Google Scholar
  4. Bublitz M, Musgaard M, Poulsen H, Thøgersen L, Olesen C, Schiøtt B, Morth JP, Møller JV, Nissen P (2013) Ion pathways in the sarcoplasmic reticulum Ca2+-ATPase. J Biol Chem 288:10759–10765CrossRefPubMedPubMedCentralGoogle Scholar
  5. Chalmers S, Olson ML, MacMillan D, Rainbow RD, McCarron JG (2007) Ion channels in smooth muscle: regulation by the sarcoplasmic reticulum and mitochondria. Cell Calcium 42:447–466CrossRefPubMedGoogle Scholar
  6. Chamley JH, Campbell GR, McConnell JD, Gröschel-Stewart U (1977) Comparison of vascular smooth muscle cells from adult human, monkey and rabbit in primary culture and in subculture. Cell Tissue Res 177:503–522PubMedGoogle Scholar
  7. Chidlow JH Jr, Sessa WC (2010) Caveolae, caveolins, and cavins: complex control of cellular signalling and inflammation. Cardiovasc Res 86:219–225CrossRefPubMedPubMedCentralGoogle Scholar
  8. Craig R, Woodhead JL (2006) Structure and function of myosin filaments. Curr Opin Struct Biol 16:204–212CrossRefPubMedGoogle Scholar
  9. Devine CE, Somlyo AV, Somlyo AP (1972) Sarcoplasmic reticulum and excitation-contraction coupling in mammalian smooth muscles. J Cell Bio 52:690–718CrossRefGoogle Scholar
  10. Eddinger TJ, Meer DP (2007) Myosin II isoforms in smooth muscle: heterogeneity and function. Am J Physiol Cell Physiol 293:C493–C508CrossRefPubMedGoogle Scholar
  11. Gao Y (2015) Vascular smooth muscle (Chapter 3). In: Dong E, Zhang Y (eds) Vascular biology, 2nd edn. Peking University Medical Press, Beijing, pp p28–p42. in ChineseGoogle Scholar
  12. Gunst SJ, Zhang W (2008) Actin cytoskeletal dynamics in smooth muscle: a new paradigm for the regulation of smooth muscle contraction. Am J Physiol Cell Physiol 295:C576–C587CrossRefPubMedPubMedCentralGoogle Scholar
  13. Hardin CD, Vallejo J (2006) Caveolins in vascular smooth muscle: form organizing function. Cardiovasc Res 69:808–815CrossRefPubMedPubMedCentralGoogle Scholar
  14. Hill MA, Meininger GA (2012) Arteriolar vascular smooth muscle cells: mechanotransducers in a complex environment. Int J Biochem Cell Biol 44:1505–1510CrossRefPubMedPubMedCentralGoogle Scholar
  15. Kim HR, Gallant C, Leavis PC, Gunst SJ, Morgan KG (2008) Cytoskeletal remodeling in differentiated vascular smooth muscle is actin isoform dependent and stimulus dependent. Am J Physiol Cell Physiol 295:C768–C778CrossRefPubMedPubMedCentralGoogle Scholar
  16. Lan B, Deng L, Donovan GM, Chin LY, Syyong HT, Wang L, Zhang J, Pascoe CD, Norris BA, Liu JC, Swyngedouw NE, Banaem SM, Paré PD, Seow CY (2015) Force maintenance and myosin filament assembly regulated by Rho-kinase in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 308:L1–L10CrossRefPubMedGoogle Scholar
  17. Lehman W, Morgan KG (2012) Structure and dynamics of the actin-based smooth muscle contractile and cytoskeletal apparatus. J Muscle Res Cell Motil 33:461–469CrossRefPubMedPubMedCentralGoogle Scholar
  18. Liu JC, Rottler J, Wang L, Zhang J, Pascoe CD, Lan B, Norris BA, Herrera AM, Paré PD, Seow CY (2013) Myosin filaments in smooth muscle cells do not have a constant length. J Physiol 591:5867–5878CrossRefPubMedPubMedCentralGoogle Scholar
  19. Marston S, El-Mezgueldi M (2008) Role of Tropomyosin in the regulation of contraction in smooth muscle. Adv Exp Med Biol 644:110–123CrossRefPubMedGoogle Scholar
  20. Marston SB, Smith CW (1985) The thin filaments of smooth muscles. J Muscle Res Cell Motil 6:669–708CrossRefPubMedGoogle Scholar
  21. McCarron JG, Wilson C, Sandison ME, Olson ML, Girkin JM, Saunter C, Chalmers S (2013) From structure to function: mitochondrial morphology, motion and shaping in vascular smooth muscle. J Vasc Res 50:357–371CrossRefPubMedPubMedCentralGoogle Scholar
  22. Mironneau J, Coussin F, Jeyakumar LH, Fleischer S, Mironneau C, Macrez N (2001) Contribution of ryanodine receptor subtype 3 to Ca2+- responses in Ca2+ -overloaded cultured rat portal vein myocytes. J Biol Chem 276:11257–11264CrossRefPubMedGoogle Scholar
  23. Narayanan D, Adebiyi A, Jaggar JH (2012) Inositol trisphosphate receptors in smooth muscle cells. Am J Physiol Heart Circ Physiol 302:H2190–H2210CrossRefPubMedPubMedCentralGoogle Scholar
  24. Prakriya M, Lewis RS (2015) Store-operated calcium channels. Physiol Rev 95:1383–1436CrossRefPubMedPubMedCentralGoogle Scholar
  25. Rensen SS, Doevendans PA, van Eys GJ (2007) Regulation and characteristics of vascular smooth muscle cell phenotypic diversity. Neth Heart J 15:100–108CrossRefPubMedPubMedCentralGoogle Scholar
  26. Roman HN, Zitouni NB, Kachmar L, Ijpma G, Hilbert L, Matusovsky O, Benedetti A, Sobieszek A, Lauzon AM (2013) Unphosphorylated calponin enhances the binding force of unphosphorylated myosin to actin. Biochim Biophys Acta 1830:4634–4641CrossRefPubMedPubMedCentralGoogle Scholar
  27. Seow CY (2005) Myosin filament assembly in an ever-changing myofilament lattice of smooth muscle. Am J Physiol Cell Physiol 289:C1363–C1368CrossRefPubMedGoogle Scholar
  28. Serysheva II (2014) Toward a high-resolution structure of IP3R channel. Cell Calcium 56:125–132Google Scholar
  29. Sowa G (2012) Caveolae, caveolins, cavins, and endothelial cell function: new insights. Front Physiol 2:120CrossRefPubMedPubMedCentralGoogle Scholar
  30. Tang DD (2008) Intermediate filaments in smooth muscle. Am J Physiol Cell Physiol 294:C869–C878CrossRefPubMedPubMedCentralGoogle Scholar
  31. Taylor KA, Feig M, Brooks CL 3rd, Fagnant PM, Lowey S, Trybus KM (2014) Role of the essential light chain in the activation of smooth muscle myosin by regulatory light chain phosphorylation. J Struct Biol 185:375–382CrossRefPubMedGoogle Scholar
  32. Thoresen T, Lenz M, Gardel ML (2013) Thick filament length and isoform composition determine self-organized contractile units in actomyosin bundles. Biophys J 104:655–665CrossRefPubMedPubMedCentralGoogle Scholar
  33. Wang CL (2008) Caldesmon and the regulation of cytoskeletal functions. Adv Exp Med Biol 644:250–272CrossRefPubMedPubMedCentralGoogle Scholar
  34. Winder SJ, Allen BG, Clément-Chomienne O, Walsh MP (1998) Regulation of smooth muscle actin-myosin interaction and force by calponin. Acta Physiol Scand 164:415–426CrossRefPubMedGoogle Scholar
  35. Wray S, Burdyga T (2010) Sarcoplasmic reticulum function in smooth muscle. Physiol Rev 90:113–178CrossRefPubMedGoogle Scholar
  36. Yamin R, Morgan KG (2012) Deciphering actin cytoskeletal function in the contractile vascular smooth muscle cell. J Physiol 590:4145–4154CrossRefPubMedPubMedCentralGoogle Scholar
  37. Zhang Y, Hermanson ME, Eddinger TJ (2013) Tonic and phasic smooth muscle contraction is not regulated by the PKCα - CPI-17 pathway in swine stomach antrum and fundus. PLoS One 8:e74608CrossRefPubMedPubMedCentralGoogle Scholar
  38. Zheng YM, Wang QS, Rathore R, Zhang WH, Mazurkiewicz JE, Sorrentino V, Singer HA, Kotlikoff MI, Wang YX (2005) Type-3 ryanodine receptors mediate hypoxia-, but not neurotransmitter-induced calcium release and contraction in pulmonary artery smooth muscle cells. J Gen Physiol 125:427–440CrossRefPubMedPubMedCentralGoogle Scholar
  39. Zhuge R, Fogarty KE, Tuft RA, Walsh JV Jr (2002) Spontaneous transient outward currents arise from microdomains where BK channels are exposed to a mean Ca2+ concentration on the order of 10 microM during a Ca2+ spark. J Gen Physiol 120:15–27CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Yuansheng Gao
    • 1
  1. 1.Department of Physiology and PathophysiologyPeking University Health Science CenterBeijingChina

Personalised recommendations