Skip to main content
  • 783 Accesses

Abstract

Pulmonary circulation is characterized by low intravascular arterial pressure and low vascular resistance. As compared with those of systemic circulation, pulmonary arteries have thinner walls with fewer vascular smooth muscles and exhibit a lower basal tone so that modest external forces can exert relatively large hemodynamic effects. The external forces include those resulted from changes in gravity due to postures and changes in lung volume during breathing. The pulmonary circulation accommodates the entire cardiac output. The accommodation of increased output of the right ventricle is mainly achieved by distension and recruitment of pulmonary vessels. Pulmonary vascular activity is regulated by various humoral and neuronal agents including those released from the endothelium. Pulmonary vascular tone is also affected by hypoxia, which causes vasoconstriction. Such a response diverts blood flow from less well-oxygenated to better-oxygenated locations in the lung so that perfusion is better matched to ventilation resulting to a more efficient gas exchange. If the hypoxic stimulus persists, vasoconstriction is accompanied by vascular remodeling, which may lead to the development of pulmonary hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Archer SL, Huang J, Henry T, Peterson D, Weir EK (1993) A redox-based O2 sensor in rat pulmonary vasculature. Circ Res 73:1100–1112

    Article  CAS  PubMed  Google Scholar 

  • Ataya A, Cope J, Alnuaimat H (2016) A review of targeted pulmonary arterial hypertension-specific pharmacotherapy. J Clin Med 5.pii: E114

    Google Scholar 

  • Baile EM (1996) The anatomy and physiology of the bronchial circulation. J Aerosol Med 9:1–6

    Article  CAS  PubMed  Google Scholar 

  • Barnes PJ, Liu SF (1995) Regulation of pulmonary vascular tone. Pharmacol Rev 47:87–131

    CAS  PubMed  Google Scholar 

  • Beutner A (1852) Ueber die Strom- und Druckkräfte des Blutes in der Arteria pulmonalis. Z Rationelle Med 2:97–138

    Google Scholar 

  • Black SM, Johengen MJ, Ma ZD, Bristow J, Soifer SJ (1997) Ventilation and oxygenation induce endothelial nitric oxide synthase gene expression in the lungs of fetal lambs. J Clin Invest 100:1448–1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blitzer ML, Loh E, Roddy MA, Stamler JS, Creager MA (1996) Endothelium derived nitric oxide regulates systemic and pulmonary vascular resistance during acute hypoxia in humans. J Am Coll Cardiol 28:591–596

    Article  CAS  PubMed  Google Scholar 

  • Brannon TS, North AJ, Wells LB, Shaul PW (1994) Prostacyclin synthesis in ovine pulmonary artery is developmentally regulated by changes in cyclooxygenase-1 gene expression. J Clin Invest 93:2230–2235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brody JS, Stemmler EJ, DuBois AB (1968) Longitudinal distribution of vascular resistance in the pulmonary arteries, capillaries, and veins. J Clin Invest 47:783–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burnstock G (2009) Autonomic neurotransmission: 60 years since sir Henry Dale. Annu Rev Pharmacol Toxicol 49:1–30

    Article  CAS  PubMed  Google Scholar 

  • Burnstock G, Ralevic V (2013) Purinergic signaling and blood vessels in health and disease. Pharmacol Rev 66:102–192

    Article  PubMed  Google Scholar 

  • Burrowes KS, Hunter PJ, Tawhai MH (2005) Anatomically based finite element models of the human pulmonary arterial and venous trees including supernumerary vessels. J Appl Physiol 99:731–738

    Article  PubMed  Google Scholar 

  • Butler J, Paley HW (1962) Lung volume and pulmonary circulation. Med Thorac 19:261–267

    CAS  PubMed  Google Scholar 

  • Cha TJ, Ehrlich JR, Zhang L, Chartier D, Leung TK, Nattel S (2005) Atrial tachycardia remodeling of pulmonary vein cardiomyocytes: comparison with left atrium and potential relation to arrhythmogenesis. Circulation 111:728–735

    Article  PubMed  Google Scholar 

  • Chammas JH, Rickaby DA, Guarin M, Linehan JH, Hanger CC, Dawson CA (1997) Flow-induced vasodilation in the ferret lung. J Appl Physiol 83:495–502

    CAS  PubMed  Google Scholar 

  • Charan NB, Thompson WH, Carvalho P (2007) Functional anatomy of bronchial veins. Pulm Pharmacol Ther 20:100–103

    Article  CAS  PubMed  Google Scholar 

  • Clapp LH, Gurung R (2015) The mechanistic basis of prostacyclin and its stable analogues in pulmonary arterial hypertension: role of membrane versus nuclear receptors. Prostaglandins Other Lipid Mediat 120:56–71

    Article  CAS  PubMed  Google Scholar 

  • Cornfield DN, Chatfield BA, McQueston JA, McMurtry IF, Abman SH (1992) Effects of birth-related stimuli on L-arginine-dependent pulmonary vasodilation in ovine fetus. Am J Physiol Heart Circ Physiol 262:H1474–H1481

    CAS  Google Scholar 

  • Coutu P, Chartier D, Nattel S (2006) Comparison of Ca2+-handling properties of canine pulmonary vein and left atrial cardiomyocytes. Am J Physiol Heart Circ Physiol 291:H2290–H2300

    Article  CAS  PubMed  Google Scholar 

  • Davenport AP, Hyndman KA, Dhaun N, Southan C, Kohan DE, Pollock JS, Pollock DM, Webb DJ, Maguire JJ (2016) Endothelin. Pharmacol Rev 68:357–418

    Article  PubMed  PubMed Central  Google Scholar 

  • Dunham-Snary KJ, Wu D, Sykes EA, Thakrar A, Parlow LR, Mewburn JD, Parlow JL, Archer SL (2017) Hypoxic pulmonary vasoconstriction: from molecular mechanisms to medicine. Chest 151:181–192

    Article  PubMed  Google Scholar 

  • Elliott FM, Reid LM (1965) Some new facts about the pulmonary artery and its branching pattern. Clin Radiol 16:193–198

    Article  CAS  PubMed  Google Scholar 

  • Fishman AP (2011) Pulmonary circulation. Compr Physiol:93–165

    Google Scholar 

  • Fitzpatrick FA, Soberman R (2001) Regulated formation of eicosanoids. J Clin Invest 107:1347–1351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Y (2010) The multiple actions of NO. Pflügers Arch Eur J Physiol 459:829–839

    Article  CAS  Google Scholar 

  • Gao Y, Raj JU (2006) cGMP-dependent protein kinase in regulation of the pulmonary circulation. Curr Resp Med Rev 2:373–381

    Article  CAS  Google Scholar 

  • Gao Y, Raj JU (2010) Regulation of the pulmonary circulation in the fetus and newborn. Physiol Rev 90:1291–1335

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Chen T, Raj JU (2016) Endothelial and smooth muscle cell interactions in the pathobiology of pulmonary hypertension. Am J Respir Cell Mol Biol 54:451–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gil J (1980) Organization of microcirculation in the lung. Annu Rev Physiol 42:177–186

    Article  CAS  PubMed  Google Scholar 

  • Glenny R, Robertson HT (2011) Distribution of perfusion. Compr Physiol 1:245–262

    PubMed  Google Scholar 

  • Greenberg B, Rhoden K, Barnes PJ (1987) Endothelium-dependent relaxation of human pulmonary arteries. Am J Phys 252:H434–H438

    CAS  Google Scholar 

  • Griendling KK, Touyz RM, Zweier JL, Dikalov S, Chilian W, Chen YR, Harrison DG, Bhatnagar A, American Heart Association Council on Basic Cardiovascular Sciences (2016) Measurement of reactive oxygen species, reactive nitrogen species, and redox-dependent signaling in the cardiovascular system: a scientific statement from the American Heart Association. Circ Res 119:e39–e75

    Article  CAS  PubMed  Google Scholar 

  • Hakim TS, Michel RP, Chang HK (1982) Partitioning of pulmonary vascular resistance in dogs by arterial and venous occlusion. J Appl Physiol Respir Environ Exerc Physiol 52:710–715

    CAS  PubMed  Google Scholar 

  • Hassink RJ, Aretz HT, Ruskin J, Keane D (2003) Morphology of atrial myocardium in human pulmonary veins: a postmortem analysis in patients with and without atrial fibrillation. J Am Coll Cardiol 42:1108–1114

    Article  PubMed  Google Scholar 

  • Horsfield K (1984) Axial pathways compared with complete data in morphological studies of the lung. Respir Physiol 55:317–324

    Article  CAS  PubMed  Google Scholar 

  • Howell JB, Permutt S, Proctor DF, Riley RL (1961) Effect of inflation of the lung on different parts of pulmonary vascular bed. J Appl Physiol 16:71–76

    CAS  PubMed  Google Scholar 

  • Huang W, Yen RT, McLaurine M, Bledsoe G (1996) Morphometry of the human pulmonary vasculature. J Appl Physiol 81:2123–2133

    CAS  PubMed  Google Scholar 

  • Hughes M, West JB (2008) Point: gravity is the major factor determining the distribution of blood flow in the human lung. J Appl Physiol 104:1531–1533

    Article  PubMed  Google Scholar 

  • Kane DW, Tesauro T, Newman JH (1993) Adrenergic modulation of the pulmonary circulation during strenuous exercise in sheep. Am Rev Respir Dis 147:1233–1238

    Article  CAS  PubMed  Google Scholar 

  • Koizumi T, Gupta R, Banerjee M, Newman JH (1994) Changes in pulmonary vascular tone during exercise. Effects of nitric oxide (NO) synthase inhibition, L-arginine infusion and NO inhalation. J Clin Invest 94:2285–2282

    Article  Google Scholar 

  • Kumar S, Sud N, Fonseca FV, Hou Y, Black SM (2010) Shear stress stimulates nitric oxide signaling in pulmonary arterial endothelial cells via a reduction in catalase activity: role of protein kinase C. Am J Physiol Lung Cell Mol Physiol 298:L105–L116

    Article  CAS  PubMed  Google Scholar 

  • Kummer W (2011) Pulmonary vascular innervation and its role in responses to hypoxia: size matters! Proc Am Thorac Soc 8:471–476

    Article  CAS  PubMed  Google Scholar 

  • LaBourene JI, Coles JG, Johnson DJ, Mehra A, Keeley FW, Rabinovitch M (1990) Alterations in elastin and collagen related to the mechanism of progressive pulmonary venous obstruction in a piglet model. A hemodynamic, ultrastructural, and biochemical study. Circ Res 66:438–456

    Article  CAS  PubMed  Google Scholar 

  • Leach RM, Hill HM, Snetkov VA, Robertson TP, Ward JP (2001) Divergent roles of glycolysis and the mitochondrial electron transport chain in hypoxic pulmonary vasoconstriction of the rat: identity of the hypoxic sensor. J Physiol 536:211–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levitzky MG (2006) Teaching the effects of gravity and intravascular and alveolar pressures on the distribution of pulmonary blood flow using a classic paper by West et al. Adv Physiol Educ 30:5–8

    Article  PubMed  Google Scholar 

  • Li Y, Connolly M, Nagaraj C, Tang B, Bálint Z, Popper H, Smolle-Juettner FM, Lindenmann J, Kwapiszewska G, Aaronson PI, Wohlkoenig C, Leithner K, Olschewski H, Olschewski A (2012) Peroxisome proliferator-activated receptor-β/δ, the acute signaling factor in prostacyclin-induced pulmonary vasodilation. Am J Respir Cell Mol Biol 46:372–379

    Article  CAS  PubMed  Google Scholar 

  • Lindenfeld J, Reeves JT, Horwitz LD (1983) Low exercise pulmonary resistance is not dependent on vasodilator prostaglandins. J Appl Physiol 55:558–561

    CAS  PubMed  Google Scholar 

  • Liu Q, Sham JS, Shimoda LA, Sylvester JT (2001) Hypoxic constriction of porcine distal pulmonary arteries: endothelium and endothelin dependence. Am J Physiol Lung Cell Mol Physiol 280:L856–L865

    CAS  PubMed  Google Scholar 

  • Manohar M, Goetz TE (1998) L-NAME does not affect exercise-induced pulmonary hypertension in thoroughbred horses. J Appl Physiol 84:1902–1908

    CAS  PubMed  Google Scholar 

  • Mazzone RW, Durand CM, West JB (1978) Electron microscopy of lung rapidly frozen under controlled physiological conditions. J Appl Physiol Respir Environ Exerc Physiol 45:325–333

    CAS  PubMed  Google Scholar 

  • McMahon TJ, Hood JS, Kadowitz PJ (1992) Pulmonary vasodilator response to vagal stimulation is blocked by N omega-nitro-L-arginine methyl ester in the cat. Circ Res 70:364–369

    Article  CAS  PubMed  Google Scholar 

  • Merkus D, Houweling B, Zarbanoui A, Duncker DJ (2004) Interaction between prostanoids and nitric oxide in regulation of systemic, pulmonary and coronary vascular tone in exercising swine. Am J Phys 286:H1114–H1123

    CAS  Google Scholar 

  • Michelakis ED, Weir EK, Wu X, Nsair A, Waite R, Hashimoto K, Puttagunta L, Knaus HG, Archer SL (2001) Potassium channels regulate tone in rat pulmonary veins. Am J Physiol Lung Cell Mol Physiol 280:L1138–L1147

    CAS  PubMed  Google Scholar 

  • Montani D, Chaumais MC, Guignabert C, Günther S, Girerd B, Jaïs X, Algalarrondo V, Price LC, Savale L, Sitbon O, Simonneau G, Humbert M (2014) Targeted therapies in pulmonary arterial hypertension. Pharmacol Ther 141:172–191

    Article  CAS  PubMed  Google Scholar 

  • Morkin E, Collins JA, Goldman HS, Fishman AP (1965) Pattern of blood flow in the pulmonary veins of the dog. J Appl Physiol 20:1118–1128

    Google Scholar 

  • Mueller-Hoecker J, Beitinger F, Fernandez B, Bahlmann O, Assmann G, Troidl C, Dimomeletis I, Kaab S, Deindl E (2008) Of rodents and humans: a light microscopic and ultrastructural study on cardiomyocytes in pulmonary veins. Int J Med Sci 5:152–158

    Article  PubMed  PubMed Central  Google Scholar 

  • Murray PA, Lodato RF, Michael JR (1986) Neural antagonists modulate pulmonary vascular pressure-flow plots in conscious dogs. J Appl Physiol 60:1900–1907

    Article  CAS  PubMed  Google Scholar 

  • Mynard JP, Smolich JJ (2015) One-dimensional haemodynamic modeling and wave dynamics in the entire adult circulation. Ann Biomed Eng 43:1443–1460

    Article  PubMed  Google Scholar 

  • Newman JH, Butka BJ, Brigham KL (1986) Thromboxane A2 and prostacyclin do not modulate pulmonary hemodynamics during exercise in sheep. J Appl Physiol 61:1706–1711

    CAS  PubMed  Google Scholar 

  • Ochs M, Nyengaard JR, Jung A, Knudsen L, Voigt M, Wahlers T, Richter J, Gundersen HJ (2004) The number of alveoli in the human lung. Am J Respir Crit Care Med 169:120–124

    Article  PubMed  Google Scholar 

  • Paes de Almeida O, Bohm CM, de Paula Carvalho M, Paes de Carvalho A (1975) The cardiac muscle in the pulmonary vein of the rat: a morphological and electrophysiological study. J Morphol 145:409–433

    Article  CAS  PubMed  Google Scholar 

  • Porcelli RJ, Bergofsky EH (1973) Adrenergic receptors in pulmonary vasoconstrictor responses to gaseous and humoral agents. J Appl Physiol 34:483–488

    CAS  PubMed  Google Scholar 

  • Rajagopalan B, Friend JA, Stallard T, Lee GD (1975) Blood flow in pulmonary veins: II. The influence of events transmitted from the right and left sides of the heart. Cardiovasc Res 13:677–683

    Article  Google Scholar 

  • Redding GJ, McMurtry I, Reeves JT (1984) Effects of meclofenamate on pulmonary vascular resistance correlate with postnatal age in young piglets. Pediatr Res 18:579–583

    Article  CAS  PubMed  Google Scholar 

  • Reid L (1965) The angiogram and pulmonary artery structure and branching (in the normal and with reference to disease). Proc Royal Soc Med 58:681–684

    Article  CAS  Google Scholar 

  • Rhodin JA (1978) Microscopic anatomy of the pulmonary vascular bed in the cat lung. Microvasc Res 15:169–193

    Article  CAS  PubMed  Google Scholar 

  • Rosenzweig DY, Hughes JM, Glazier JB (1970) Effects of transpulmonary and vascular pressures on pulmonary blood volume in isolated lung. J Appl Physiol 28:553–560

    CAS  PubMed  Google Scholar 

  • Rothman AM, Arnold ND, Chang W, Watson O, Swift AJ, Condliffe R, Elliot CA, Kiely DG, Suvarna SK, Gunn J, Lawrie A (2015) Pulmonary artery denervation reduces pulmonary artery pressure and induces histological changes in an acute porcine model of pulmonary hypertension. Circ Cardiovasc Interv 8:e002569

    Article  PubMed  PubMed Central  Google Scholar 

  • Sham JS, Crenshaw BR Jr, Deng LH, Shimoda LA, Sylvester JT (2000) Effects of hypoxia in porcine pulmonary arterial myocytes: roles of KV channel and endothelin-1. Am J Physiol Lung Cell Mol Physiol 279:L262–L272

    CAS  PubMed  Google Scholar 

  • Shoukas AA (1975) Pressure-flow and pressure-volume relations in the entire pulmonary vascular bed of the dog determined by two-port analysis. Circ Res 37:809–818

    Article  CAS  PubMed  Google Scholar 

  • Simmons DH, Linde LM, Miller JH, O’Reilly RJ (1961) Relation between lung volume and pulmonary vascular resistance. Circ Res 9:465–471

    Article  Google Scholar 

  • Sommer N, Strielkov I, Pak O, Weissmann N (2016) Oxygen sensing and signal transduction in hypoxic pulmonary vasoconstriction. Eur Respir J 47:288–303

    Article  CAS  PubMed  Google Scholar 

  • Stamler JS, Loh E, Reddy MA, Creager MA (1994) Nitric oxide regulates basal systemic and pulmonary vascular resistance in healthy humans. Circulation 89:2035–2040

    Article  CAS  PubMed  Google Scholar 

  • Staub NC, Schultz EL (1968) Pulmonary capillary length in dogs, cat and rabbit. Respir Physiol 5:371–378

    Article  CAS  PubMed  Google Scholar 

  • Sud N, Kumar S, Wedgwood S, Black SM (2009) Modulation of PKC signaling alters the shear stress-mediated increases in endothelial nitric oxide synthase transcription: role of STAT3. Am J Physiol Lung Cell Mol Physiol 296:L519–L526

    Article  CAS  PubMed  Google Scholar 

  • Suresh K, Shimoda LA (2016) Lung circulation. Compr Physiol 6:897–943

    Article  PubMed  Google Scholar 

  • Sylvester JT, Shimoda LA, Aaronson PI, Ward JP (2012) Hypoxic pulmonary vasoconstriction. Physiol Rev 92:367–520

    Article  CAS  PubMed  Google Scholar 

  • Tan JZ, Kaley G, Gurtner GH (1997) Nitric oxide and prostaglandins mediate vasodilation to 5,6-EET in rabbit lung. Adv Exp Med Biol 407:561–566

    Article  CAS  PubMed  Google Scholar 

  • Tan AY, Chen PS, Chen LS, Fishbein MC (2007) Autonomic nerves in pulmonary veins. Heart Rhythm 4(3 suppl):S57–S60

    Article  PubMed  Google Scholar 

  • Townsley MI (2012) Structure and composition of pulmonary arteries, capillaries, and veins. Compr Physiol 2:675–709

    PubMed  PubMed Central  Google Scholar 

  • Townsley MI, Snell KS, Ivey CL, Culberson DE, Liu DC, Reed RK, Mathieu-Costello O (1999) Remodeling of lung interstitium but not resistance vessels in canine pacing-induced heart failure. J Appl Physiol 87:1823–1830

    CAS  PubMed  Google Scholar 

  • Tuder RM, Cool CD, Geraci MW, Wang J, Abman SH, Wright L, Badesch D, Voelkel NF (1999) Prostacyclin synthase expression is decreased in lungs from patients with severe pulmonary hypertension. Am J Respir Crit Care Med 159:1925–1932

    Article  CAS  PubMed  Google Scholar 

  • von Euler US, Liljestrand G (1946) Observations on the pulmonary arterial blood pressure of the cat. Acta Physiol Scand 12:301–320

    Article  Google Scholar 

  • Wang L, Yin J, Nickles HT, Ranke H, Tabuchi A, Hoffmann J, Tabeling C, Barbosa-Sicard E, Chanson M, Kwak BR, Shin HS, Wu S, Isakson BE, Witzenrath M, de Wit C, Fleming I, Kuppe H, Kuebler WM (2012) Hypoxic pulmonary vasoconstriction requires connexin 40-mediated endothelial signal conduction. J Clin Invest 122:4218–4230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward JPT, Aaronson PI (1999) Mechanisms of hypoxic pulmonary vasoconstriction: can anyone be right? Respir Physiol 115:261–271

    Article  CAS  PubMed  Google Scholar 

  • Waypa GB, Chandel NS, Schumacker PT (2001) Model for hypoxic pulmonary vasoconstriction involving mitochondrial oxygen sensing. Circ Res 88:1259–1266

    Article  CAS  PubMed  Google Scholar 

  • Waypa GB, Marks JD, Guzy R, Mungai PT, Schriewer J, Dokic D, Schumacker PT (2010) Hypoxia triggers subcellular compartmental redox signaling in vascular smooth muscle cells. Circ Res 106:526–535

    Article  CAS  PubMed  Google Scholar 

  • Waypa GB, Marks JD, Guzy RD, Mungai PT, Schriewer JM, Dokic D, Ball MK, Schumacker PT (2013) Superoxide generated at mitochondrial complex III triggers acute responses to hypoxia in the pulmonary circulation. Am J Respir Crit Care Med 187:424–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waypa GB, Smith KA, Schumacker PT (2016) O2 sensing, mitochondria and ROS signaling: the fog is lifting. Mol Asp Med 47–48:76–89

    Article  Google Scholar 

  • Wedgwood S, Mitchell CJ, Fineman JR, Black SM (2003) Developmental differences in the shear stress-induced expression of endothelial NO synthase: changing role of AP-1. Am J Physiol Lung Cell Mol Physiol 284:L650–L662

    Article  CAS  PubMed  Google Scholar 

  • Weibel ER, Sapovale B, Filoche M (2005) Design of peripheral airways for efficient gas exchange. Respir Physiol Neurobiol 148:3–21

    Article  PubMed  Google Scholar 

  • West JB, Dollery CT, Naimark A (1964) Distribution of blood flow in isolated lung; relation to vascular and alveolar pressures. J Appl Physiol 19:713–724

    CAS  PubMed  Google Scholar 

  • Wiener F, Morkin E, Skalak R, Fishman AP (1966) Wave propagation in the pulmonary circulation. Circ Res 19:834–850

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Gao, Y. (2017). Pulmonary Vasoreactivity. In: Biology of Vascular Smooth Muscle: Vasoconstriction and Dilatation. Springer, Singapore. https://doi.org/10.1007/978-981-10-4810-4_17

Download citation

Publish with us

Policies and ethics