Cyclic GMP Signaling

  • Yuansheng Gao


Guanosine 3′5′ cyclic monophosphate (cGMP) is synthesized by soluble guanylyl cyclase (sGC) when vascular smooth muscle is stimulated with nitric oxide (NO) and nitrovasodilators and by particulate guanylate cyclases (pGC) when stimulated with natriuretic peptides. The intracellular cGMP levels are determined by the balance of the synthesis of this cyclic nucleotide by sGC and pGC and its hydrolysis mainly by the type 5 phosphodiesterase. cGMP exerts its action predominantly through the activation of cGMP-dependent protein kinase (PKG) resulting in reduced cytosolic Ca2+ and decreased Ca2+ sensitivity of the myofilaments and consequently vasodilatation. In these processes the activation of the large-conductance Ca2+-activated K+ channel, phosphorylation of IP3R-associated cGMP kinase substrate, phosphorylation of myosin phosphatase target subunit 1, and counteraction on Rho A/Rho kinase activity may serve as the major mechanisms for the cGMP/PKG signaling.


Soluble guanylyl cyclase Particulate guanylate cyclases cGMP cIMP Phosphodiesterase PKG IRAG MLCP MYPT1 ROCK 


  1. Ammendola A, Geiselhöringer A, Hofmann F, Schlossmann J (2001) Molecular determinants of the interaction between the inositol 1,4,5-trisphosphate receptor-associated cGMP kinase substrate (IRAG) and cGMP kinase Iβ. J Biol Chem 276:24153–24159CrossRefPubMedGoogle Scholar
  2. Ashman DF, Lipton R, Melicow MM, Price TD (1963) Isolation of adenosine 3′,5′-monophosphate and guanosine 3′, 5′-monophosphate from rat urine. Biochem Biophys Res Commun 11:330–334CrossRefPubMedGoogle Scholar
  3. Azevedo MF, Faucz FR, Bimpaki E, Horvath A, Levy I, de Alexandre RB, Ahmad F, Manganiello V, Stratakis CA (2014) Clinical and molecular genetics of the phosphodiesterases (PDEs). Endocr Rev 35:195–233CrossRefPubMedGoogle Scholar
  4. Bender AT, Beavo JA (2006) Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev 58:488–520CrossRefPubMedGoogle Scholar
  5. Beste KY, Burhenne H, Kaever V, Stasch JP, Seifert R (2012) Nucleotidyl cyclase activity of soluble guanylyl cyclase α1β1. Biochemistry 51:194–204CrossRefPubMedGoogle Scholar
  6. Biel M (2009) Cyclic nucleotide-regulated cation channels. J Biol Chem 284:9017–9021CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bubb KJ, Trinder SL, Baliga RS, Patel J, Clapp LH, MacAllister RJ, Hobbs AJ (2014) Inhibition of phosphodiesterase 2 augments cGMP and cAMP signaling to ameliorate pulmonary hypertension. Circulation 130:496–507CrossRefPubMedPubMedCentralGoogle Scholar
  8. Budworth J, Meillerais S, Charles I, Powell K (1999) Tissue distribution of the human soluble guanylate cyclases. Biochem Biophys Res Commun 263:696–701CrossRefPubMedGoogle Scholar
  9. Chen J, Crossland RF, Noorani MM, Marrelli SP (2009) Inhibition of TRPC1/TRPC3 by PKG contributes to NO-mediated vasorelaxation. Am J Physiol Heart Circ Physiol 297:H417–H424CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chen Z, Zhang X, Ying L, Dou D, Li Y, Bai Y, Liu J, Liu L, Feng H, Yu X, Leung SWS, Vanhoutte PM, Gao Y (2014) Cyclic IMP-synthesized by sGC as a mediator of hypoxic contraction of coronary arteries. Am J Physiol Heart Circ Physiol 307:H328–H336CrossRefPubMedGoogle Scholar
  11. Choudhury N, Khromov AS, Somlyo AP, Somlyo AV (2004) Telokin mediates Ca2+-desensitization through activation of myosin phosphatase in phasic and tonic smooth muscle. J Muscle Res Cell Motil 25:657–665CrossRefPubMedGoogle Scholar
  12. Corbin JD, Beasley A, Blount MA, Francis SH (2005) High lung PDE5: a strong basis for treating pulmonary hypertension with PDE5 inhibitors. Biochem Biophys Res Commun 334:930–938CrossRefPubMedGoogle Scholar
  13. De Bold AJ, Borenstein HB, Veress AT, Sonnenberg H (1981) A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Sci 28:89–94CrossRefPubMedGoogle Scholar
  14. Derbyshire ER, Marletta MA (2012) Structure and regulation of soluble guanylate cyclase. Annu Rev Biochem 81:533–559CrossRefPubMedGoogle Scholar
  15. Desch M, Sigl K, Hieke B, Salb K, Kees F, Bernhard D, Jochim A, Spiessberger B, Höcherl K, Feil R, Feil S, Lukowski R, Wegener JW, Hofmann F, Schlossmann J (2010) IRAG determines nitric oxide- and atrial natriuretic peptide-mediated smooth muscle relaxation. Cardiovasc Res 86:496–505CrossRefPubMedGoogle Scholar
  16. Detremmerie CM, Chen Z, Li Z, Alkharfy KM, Leung SWS, Xu A, Gao Y, Vanhoutte PM (2016) Endothelium-dependent contractions of isolated arteries to thymoquinone require biased activity of sGC with subsequent cIMP production. J Pharmacol Exp Ther 358:558–568CrossRefPubMedGoogle Scholar
  17. Dou D, Zheng X, Ying L, Ye L, Gao Y (2013) Sulfhydryl-dependent dimerization and cGMP-mediated vasodilatation. J Cardiovasc Pharmacol 62:1–5CrossRefPubMedGoogle Scholar
  18. Follmann M, Griebenow N, Hahn MG, Hartung I, Mais FJ, Mittendorf J, Schäfer M, Schirok H, Stasch JP, Stoll F, Straub A (2013) The chemistry and biology of soluble guanylate cyclase stimulators and activators. Angew Chem Int Ed Engl 52:9442–9462CrossRefPubMedGoogle Scholar
  19. Francis SH, Busch JL, Corbin JD, Sibley D (2010) cGMP-dependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action. Pharmacol Rev 62:525–563CrossRefPubMedPubMedCentralGoogle Scholar
  20. Friebe A, Koesling D (2009) The function of NO-sensitive guanylyl cyclase: what we can learn from genetic mouse models. Nitric Oxide 21:149–156CrossRefPubMedGoogle Scholar
  21. Friebe A, Mergia E, Dangel O, Lange A, Koesling D (2007) Fatal gastrointestinal obstruction and hypertension in mice lacking nitric oxide-sensitive guanylyl cyclase. Proc Natl Acad Sci U S A 104:7699–7704CrossRefPubMedPubMedCentralGoogle Scholar
  22. Fukao M, Mason HS, Britton FC, Kenyon JL, Horowitz B, Keef KD (1999) Cyclic GMP-dependent protein kinase activates cloned BKCa channels expressed in mammalian cells by direct phosphorylation at serine 1072. J Biol Chem 274:10927–10935CrossRefPubMedGoogle Scholar
  23. Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376CrossRefPubMedGoogle Scholar
  24. Gao Y (2010) The multiple actions of NO. Pflügers Arch - Eur J Physiol, 2010. 459: 829-839.Google Scholar
  25. Gao Y (2016) Conventional and unconventional mechanisms for soluble guanylyl cyclase signaling. J Cardiovasc Pharmacol 67(367-372):2016Google Scholar
  26. Gao Y, Tolsa J-F, Shen H, Raj JU (1998) Effect of selective phosphodiesterase inhibitors on the responses of ovine pulmonary veins to prostaglandin E2. J Appl Physiol 84:13–18PubMedGoogle Scholar
  27. Gao Y, Portugal AD, Negash S, Zhou W, Longo LD, Raj JU (2007) Role of Rho kinases in PKG-mediated relaxation of pulmonary arteries of fetal lambs exposed to chronic high altitude hypoxia. Am J Physiol Lung Cell Mol Physiol 292:L678–L684CrossRefPubMedGoogle Scholar
  28. Gao Y, Portugal AD, Liu J, Negash S, Zhou W, Tian J, Xiang R, Longo LD, Raj JU (2008) Preservation of cGMP-induced relaxation of pulmonary veins of fetal lambs exposed to chronic high altitude hypoxia: role of PKG and Rho kinase. Am J Physiol Lung Cell Mol Physiol 295:L889–L896CrossRefPubMedPubMedCentralGoogle Scholar
  29. Garbers DL, Suddath JL, Hardman JG (1975) Enzymatic formation of inosine 3′, 5′-monophosphate and of 2′-deoxyguanosine 3′, 5′-monophosphate. Inosinate and deoxyguanylate cyclase activity. Biochim Biophys Acta 377:174–185CrossRefPubMedGoogle Scholar
  30. Hall CN, Garthwaite J (2009) What is the real physiological NO concentration in vivo? Nitric Oxide 21:92–103CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hardman JG, Sutherland EW (1969) Guanyl cyclase, an enzyme catalyzing the formation of guanosine 3′,5′-monophosphate from guanosine trihosphate. J Biol Chem 244:6363–6370PubMedGoogle Scholar
  32. Harraz OF, Brett SE, Welsh DG (2014) Nitric oxide suppresses vascular voltage-gated T-type Ca2+ channels through cGMP/PKG signaling. Am J Physiol Heart Circ Physiol 306:H279–H285CrossRefPubMedGoogle Scholar
  33. Hofmann F, Wegener JW (2013) cGMP-dependent protein kinases (cGK). Methods Mol Biol 1020:17–50CrossRefPubMedGoogle Scholar
  34. Hughes JM, Murad F, Chang B, Guerrant RL (1978) Role of cyclic GMP in the action of heatstable enterotoxin of Escherichia coli. Nature 271:755–756CrossRefPubMedGoogle Scholar
  35. Ignarro LJ (1989) Endothelium-derived nitric oxide: actions and properties. FASEB J 3:31–36PubMedGoogle Scholar
  36. Kaupp UB, Seifert R (2002) Cyclic nucleotide-gated ion channels. Physiol Rev 82:769–824CrossRefPubMedGoogle Scholar
  37. Keravis T, Lugnier C (2012) Cyclic nucleotide phosphodiesterase (PDE) isozymes as targets of the intracellular signalling network: benefits of PDE inhibitors in various diseases and perspectives for future therapeutic developments. Br J Pharmacol 165:1288–1305CrossRefPubMedPubMedCentralGoogle Scholar
  38. Khromov AS, Momotani K, Jin L, Artamonov MV, Shannon J, Eto M, Somlyo AV (2012) Molecular mechanism of telokin-mediated disinhibition of myosin light chain phosphatase and cAMP/cGMP-induced relaxation of gastrointestinal smooth muscle. J Biol Chem 287:20975–20985CrossRefPubMedPubMedCentralGoogle Scholar
  39. Kim D, Rybalkin SD, Pi X, Wang Y, Zhang C, Munzel T, Beavo JA, Berk BC, Yan C (2001) Upregulation of phosphodiesterase 1A1 expression is associated with the development of nitrate tolerance. Circulation 104:2338–2343CrossRefPubMedGoogle Scholar
  40. Kim JJ, Lorenz R, Arold ST, Reger AS, Sankaran B, Casteel DE, Herberg FW, Kim C (2016) Crystal structure of PKG I:cGMP complex reveals a cGMP-mediated dimeric interface that facilitates cgmp-induced activation. Structure 24:710–720CrossRefPubMedPubMedCentralGoogle Scholar
  41. Koeppen M, Feil R, Siegl D, Feil S, Hofmann F, Pohl U, de Wit C (2004) cGMP-dependent protein kinase mediates NO- but not acetylcholine-induced dilations in resistance vessels in vivo. Hypertension 44:952–955CrossRefPubMedGoogle Scholar
  42. Kots AY, Martin E, Sharina IG, Murad F (2009) A short history of cGMP, guanylyl cyclases, and cGMP-dependent protein kinases. Handb Exp Pharmacol 191:1–14CrossRefGoogle Scholar
  43. Kuhn M (2016) Molecular physiology of membrane guanylyl cyclase receptors. Physiol Rev 96:751–804CrossRefPubMedGoogle Scholar
  44. Lakshminrusimha S, Porta NF, Farrow KN, Chen B, Gugino SF, Kumar VH, Russell JA, Steinhorn RH (2009) Milrinone enhances relaxation to prostacyclin and iloprost in pulmonary arteries isolated from lambs with persistent pulmonary hypertension of the newborn. Pediatr Crit Care Med 10:106–112CrossRefPubMedPubMedCentralGoogle Scholar
  45. Lalli MJ, Shimizu S, Sutliff RL, Kranias EG, Paul RJ (1999) [Ca2+]i homeostasis and cyclic nucleotide relaxation in aorta of phospholamban-deficient mice. Am J Phys 277:H963–H970Google Scholar
  46. Leung SW, Gao Y, Vanhoutte PM (2016) 3′, 5′-cIMP as potential second messenger in the vascular wall. Handb Exp Pharmacol .2016. [Epub ahead of print]Google Scholar
  47. Liu J, Chen Z, Ye L, Liu H, Dou D, Liu L, Yu X, Gao Y (2014) Preservation of nitric oxide-induced relaxation of porcine coronary artery: roles of the dimers of soluble guanylyl cyclase, phosphodiesterase type 5, and cGMP-dependent protein kinase. Pflügers Arch Eur J Physiol 466:1999–2008CrossRefGoogle Scholar
  48. Loirand G, Guilluy C, Pacaud P (2006) Regulation of rho proteins by phosphorylation in the cardiovascular system. Trends Cardiovasc Med 16:199–204CrossRefPubMedGoogle Scholar
  49. Maack T (1992) Receptors of atrial natriuretic factor. Annu Rev Physiol 54:11–27CrossRefPubMedGoogle Scholar
  50. Matsukawa N, Grzesik WJ, Takahashi N, Pandey KN, Pang S, Yamauchi M, Smithies O (1999) The natriuretic peptide clearance receptor locally modulates the physiological effects of the natriuretic peptide system. Proc Natl Acad Sci U S A 96:7403–7408CrossRefPubMedPubMedCentralGoogle Scholar
  51. Maurice DH, Ke H, Ahmad F, Wang Y, Chung J, Manganiello VC (2014) Advances in targeting cyclic nucleotide phosphodiesterases. Nat Rev Drug Discov 13:290–314CrossRefPubMedPubMedCentralGoogle Scholar
  52. Mergia E, Friebe A, Dangel O, Russwurm M, Koesling D (2006) Spare guanylyl cyclase NO receptors ensure high NO sensitivity in the vascular system. J Clin Invest 116:1731–1737CrossRefPubMedPubMedCentralGoogle Scholar
  53. Montfort WR, Wales JA, Weichsel A (2017) Structure and activation of soluble guanylyl cyclase, the nitric oxide sensor. Antioxid Redox Signal 26:107–121CrossRefPubMedGoogle Scholar
  54. Moyes AJ, Khambata RS, Villar I, Bubb KJ, Baliga RS, Lumsden NG, Xiao F, Gane PJ, Rebstock AS, Worthington RJ, Simone MI, Mota F, Rivilla F, Vallejo S, Peiró C, Sánchez Ferrer CF, Djordjevic S, Caulfield MJ, MacAllister RJ, Selwood DL, Ahluwalia A, Hobbs AJ (2014) Endothelial C-type natriuretic peptide maintains vascular homeostasis. J Clin Invest 124:4039–4051CrossRefPubMedPubMedCentralGoogle Scholar
  55. Osei-Owusu P, Blumer KJ (2015) Regulator of G protein signaling 2: a versatile regulator of vascular function. Prog Mol Biol Transl Sci 133:77–92CrossRefPubMedPubMedCentralGoogle Scholar
  56. Palmer RM, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526CrossRefPubMedGoogle Scholar
  57. Piggott LA, Hassell KA, Berkova Z, Morris AP, Silberbach M, Rich TC (2006) Natriuretic peptides and nitric oxide stimulate cGMP synthesis in different cellular compartments. J Gen Physiol 128:3–14CrossRefPubMedPubMedCentralGoogle Scholar
  58. Potter LR (2011) Guanylyl cyclase structure, function and regulation. Cell Signal 23:1921–1926CrossRefPubMedPubMedCentralGoogle Scholar
  59. Rembold CM, Foster DB, Strauss JD, Wingard CJ, Eyk JE (2000) cGMP-mediated phosphorylation of heat shock protein 20 may cause smooth muscle relaxation without myosin light chain dephosphorylation in swine carotid artery. J Physiol 524:865–878CrossRefPubMedPubMedCentralGoogle Scholar
  60. Ruiz-Velasco V, Zhong J, Hume JR, Keef KD (1998) Modulation of Ca2+ channels by cyclic nucleotide cross activation of opposing protein kinases in rabbit portal vein. Circ Res 82:557–565CrossRefPubMedGoogle Scholar
  61. Sakumi K, Abolhassani N, Behmanesh M, Iyama T, Tsuchimoto D, Nakabeppu Y (2010) ITPA protein, an enzyme that eliminates deaminated purine nucleoside triphosphates in cells. Mutat Res 703:43–50CrossRefPubMedGoogle Scholar
  62. Sanchez LS, de la Monte SM, Filippov G, Jones RC, Zapol WM, Bloch KD (1998) Cyclic-GMP-binding, cyclic-GMP-specific phosphodiesterase (PDE5) gene expression is regulated during rat pulmonary development. Pediatr Res 43:163–168CrossRefPubMedGoogle Scholar
  63. Sauzeau V, Le Jeune H, Cario-Toumaniantz C, Smolenski A, Lohmann SM, Bertoglio J, Chardin P, Pacaud P, Loirand G (2000) Cyclic GMP-dependent protein kinase signaling pathway inhibits RhoA-induced Ca2+ sensitization of contraction in vascular smooth muscle. J Biol Chem 275:21722–21729CrossRefPubMedGoogle Scholar
  64. Schlossmann J, Desch M (2009) cGK substrates. Handb Exp Pharmacol 191:163–193CrossRefGoogle Scholar
  65. Schlossmann J, Desch M (2011) IRAG and novel PKG targeting in the cardiovascular system. Am J Physiol Heart Circ Physiol n.d.301(3):H672-H682.Google Scholar
  66. Schmidt HH, Schmidt PM, Stasch JP (2009) NO- and haem-independent soluble guanylate cyclase activators. Handb Exp Pharmacol 191:309–339CrossRefGoogle Scholar
  67. Sharma RK, Duda T, Makino CL (2016) Integrative signaling networks of membrane guanylate cyclases: biochemistry and physiology. Front Mol Neurosci 9:83. eCollection 2016CrossRefPubMedPubMedCentralGoogle Scholar
  68. Smith M, Drummond GI, Khorana HG (1961) Cyclic phosphates. IV. Ribonucleoside 3,5-cyclic phosphates. A general method of synthesis and some properties. J Am Chem Soc 83:698–706CrossRefGoogle Scholar
  69. Somlyo AP, Somlyo AV (2003) Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev 83:1325–1358CrossRefPubMedGoogle Scholar
  70. Tang KM, Wang GR, Lu P, Karas RH, Aronovitz M, Heximer SP, Kaltenbronn KM, Blumer KJ, Siderovski DP, Zhu Y, Mendelsohn ME (2003) Regulator of G-protein signaling-2 mediates vascular smooth muscle relaxation and blood pressure. Nat Med 9:1506–1512CrossRefPubMedGoogle Scholar
  71. Tolsa J-F, Gao Y, Sander FC, Souici A-C, Moessinger A, Raj JU (2002) Differential responses of pulmonary arteries and veins of newborn lamb to atrial and C-type natriuretic peptides. Am J Physiol Heart Circ Physiol 282:H273–H280PubMedGoogle Scholar
  72. Vanhoutte PM, Zhao Y, Xu A, Leung SW (2016) Thirty years of saying NO: sources, fate, actions, and misfortunes of the endothelium-derived vasodilator mediator. Circ Res 119:375–396CrossRefPubMedGoogle Scholar
  73. Wong CO, Yao X (2008) Cyclic nucleotide-gated channels: a familiar channel family with a new function? Futur Cardiol 4:505–515CrossRefGoogle Scholar
  74. Wooldridge AA, MacDonald JA, Erdodi F, Ma C, Borman MA, Hartshorne DJ, Haystead TA (2004) Smooth muscle phosphatase is regulated in vivo by exclusion of phosphorylation of threonine 696 of MYPT1 by phosphorylation of Serine 695 in response to cyclic nucleotides. J Biol Chem 279:34496–34504CrossRefPubMedGoogle Scholar
  75. Wu S, Moore TM, Brough GH, Whitt SR, Chinkers M, Li M, Stevens T (2000) Cyclic nucleotide-gated channels mediate membrane depolarization following activation of store-operated calcium entry in endothelial cells. J Biol Chem 275:18887–18896CrossRefPubMedGoogle Scholar
  76. Ye L, Liu J, Liu H, Ying L, Dou D, Chen Z, Xu X, Raj JU, Gao Y (2013) Sulfhydryl-dependent dimerization of soluble guanylyl cyclase modulates relaxation of porcine pulmonary vessels to nitric oxide. Pflügers Arch Eur J Physiol 465:333–341CrossRefGoogle Scholar
  77. Zhang J, Xia SL, Block ER, Patel JM (2002) NO upregulation of a cyclic nucleotide-gated channel contributes to calcium elevation in endothelial cells. Am J Physiol Cell Physiol 283:C1080–C1089CrossRefPubMedGoogle Scholar
  78. Zhang DX, Borbouse L, Gebremedhin D, Mendoza SA, Zinkevich NS, Li R, Gutterman DD (2012) H2O2-induced dilation in human coronary arterioles: role of protein kinase G dimerization and large-conductance Ca2+-activated K+ channel activation. Circ Res 110:471–480CrossRefPubMedGoogle Scholar
  79. Zheng X, Ying L, Liu J, Dou D, He Q, Leung SWS, Man RYK, Vanhoutte PM, Gao Y (2011) Role of sulfhydryl-dependent dimerization of soluble guanylyl cyclase in relaxation of porcine coronary artery to nitric oxide. Cardiovasc Res 90:565–572CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Yuansheng Gao
    • 1
  1. 1.Department of Physiology and PathophysiologyPeking University Health Science CenterBeijingChina

Personalised recommendations