Skip to main content

Regulation of Myosin Light Chain Phosphorylation

  • Chapter
  • First Online:
  • 823 Accesses

Abstract

The interaction of myosin and actin constitutes the basic mechanism of muscle contractile activity. In smooth muscle cells (SMCs) including vascular smooth muscle cells, this interaction is predominantly regulated by the phosphorylation of the regulatory light chain (RLC) of myosin. The RLC is phosphorylated by myosin light chain kinase (MLCK) and dephosphorylated by myosin light chain phosphatase (MLCP). Therefore, the contractility of SMCs is determined by the relative ratio of the activity of MLCK vs. that of MLCP. During a contractile response, MLCK is activated by calmodulin-bound Ca2+. Meanwhile the activity of MLCP is suppressed by protein kinase C (PKC) through the 17-kDa PKC-potentiated inhibitor protein (CPI-17) and by Rho kinase (ROCK). The varied activities of these major signaling pathways endow SMCs with different contractile profiles such as phasic and tonic contractions to meet the diversified physiological requirements.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Brozovich FV, Nicholson CJ, Degen CV, Gao YZ, Aggarwal M, Morgan KG (2016) Mechanisms of vascular smooth muscle contraction and the basis for pharmacologic treatment of smooth muscle disorders. Pharmacol Rev 68:476–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butler T, Paul J, Europe-Finner N, Smith R, Chan EC (2013) Role of serine-threonine phosphoprotein phosphatases in smooth muscle contractility. Am J Physiol Cell Physiol 304:C485–C504

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Zhang X, Ying L, Dou D, Li Y, Bai Y, Liu J, Liu L, Feng H, Yu X, Leung SWS, Vanhoutte PM, Gao Y (2014) Cyclic IMP-synthesized by sGC as a mediator of hypoxic contraction of coronary arteries. Am J Physiol Heart Circ Physiol 307:H328–H336

    Article  CAS  PubMed  Google Scholar 

  • Cherfils J, Zeghouf M (2013) Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol Rev 93:269–309

    Article  CAS  PubMed  Google Scholar 

  • Dimopoulos GJ, Semba S, Kitazawa K, Eto M, Kitazawa T (2007) Ca2+-dependent rapid Ca2+ sensitization of contraction in arterial smooth muscle. Circ Res 100:121–129

    Article  CAS  PubMed  Google Scholar 

  • Eddinger TJ, Meer DP (2007) Myosin II isoforms in smooth muscle: heterogeneity and function. Am J Physiol Cell Physiol 293:C493–C508

    Article  CAS  PubMed  Google Scholar 

  • El-Yazbi AF, Johnson RP, Walsh EJ, Takeya K, Walsh MP, Cole WC (2010) Pressure-dependent contribution of rho kinase-mediated calcium sensitization in serotonin-evoked vasoconstriction of rat cerebral arteries. J Physiol 588:1747–1762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eto M (2009) Regulation of cellular protein phosphatase-1 (PP1) by phosphorylation of the CPI-17 family, C-kinase-activated PP1 inhibitors. J Biol Chem 284:35273–35277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eto M, Brautigan DL (2012) Endogenous inhibitor proteins that connect Ser/Thr kinases and phosphatases in cell signaling. IUBMB Life 64:732–739

    Article  PubMed  PubMed Central  Google Scholar 

  • Fisher SA, Ikebe M (1995) Developmental and tissue distribution of expression of nonmuscle and smooth muscle isoforms of myosin light chain kinase. Biochem Biophys Res Commun 217:696–703

    Article  CAS  PubMed  Google Scholar 

  • Freeley M, Kelleher D, Long A (2011) Regulation of Protein Kinase C function by phosphorylation on conserved and non-conserved sites. Cell Signal 23:753–762

    Article  CAS  PubMed  Google Scholar 

  • Gabet AS, Coulon S, Fricot A, Vandekerckhove J, Chang Y, Ribeil JA, Lordier L, Zermati Y, Asnafi V, Belaid Z, Debili N, Vainchenker W, Varet B, Hermine O, Courtois G (2011) Caspase-activated ROCK-1 allows erythroblast terminal maturation independently of cytokine-induced Rho signaling. Cell Death Differ 18:678–689

    Article  CAS  PubMed  Google Scholar 

  • Gallagher PJ, Herring BP, Stull JT (1997) Myosin light chain kinases. J Muscle Res Cell Motil 18:1–16

    Article  CAS  PubMed  Google Scholar 

  • Gao N, Huang J, He W, Zhu M, Kamm KE, Stull JT (2013) Signaling through myosin light chain kinase in smooth muscles. J Biol Chem 288:7596–7605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grassie ME, Moffat LD, Walsh MP, MacDonald JA (2011) The myosin phosphatase targeting protein (MYPT) family: a regulated mechanism for achieving substrate specificity of the catalytic subunit of protein phosphatase type 1δ. Arch Biochem Biophys 510:147–159

    Article  CAS  PubMed  Google Scholar 

  • Hartmann S, Ridley AJ, Lutz S (2015) The function of rho-associated kinases ROCK1 and ROCK2 in the pathogenesis of cardiovascular disease. Front Pharmacol 6:276

    Article  PubMed  PubMed Central  Google Scholar 

  • Heissler SM, Sellers JR (2016) Various themes of myosin regulation. J Mol Biol 428:1927–1946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong F, Haldeman BD, Jackson D, Carter M, Baker JE, Cremo CR (2011) Biochemistry of smooth muscle myosin light chain kinase. Arch Biochem Biophys 510:135–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong F, Brizendine RK, Carter MS, Alcala DB, Brown AE, Chattin AM, Haldeman BD, Walsh MP, Facemyer KC, Baker JE, Cremo CR (2015) Diffusion of myosin light chain kinase on actin: a mechanism to enhance myosin phosphorylation rates in smooth muscle. J Gen Physiol 146:267–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Igumenova TI (2015) Dynamics and membrane interactions of protein kinase C. Biochemistry 54:4953–4968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson RP, El-Yazbi AF, Takeya K, Walsh EJ, Walsh MP, Cole WC (2009) Ca2+ sensitization via phosphorylation of myosin phosphatase targeting subunit at threonine-855 by Rho kinase contributes to the arterial myogenic response. J Physiol 587:2537–2553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamm KE, Stull JT (2011) Signaling to myosin regulatory light chain in sarcomeres. J Biol Chem 286:9941–9947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaneko T, Amano M, Maeda A, Goto H, Takahashi K, Ito M, Kaibuchi K (2000) Identification of calponin as a novel substrate of rho-kinase. Biochem Biophys Res Commun 273(1): 110–116

    Article  CAS  PubMed  Google Scholar 

  • Kang JH, Asai D, Tsuchiya A, Mori T, Niidome T, Katayama Y (2011) Peptide substrates for rho-associated kinase 2 (rho-kinase 2/ROCK2). PLoS One 6:e22699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khasnis M, Nakatomi A, Gumpper K, Eto M (2014) Reconstituted human myosin light chain phosphatase reveals distinct roles of two inhibitory phosphorylation sites of the regulatory subunit, MYPT1. Biochemistry 53:2701–2709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loirand G, Pacaud P (2010) The role of rho protein signaling in hypertension. Nat Rev Cardiol 7:637–647

    Article  CAS  PubMed  Google Scholar 

  • Månsson A, Rassier D, Tsiavaliaris G (2015) Poorly understood aspects of striated muscle contraction. Biomed Res Int 2015:245154

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagaoka T, Morio Y, Casanova N, Bauer N, Gebb S, McMurtry I, Oka M (2004) Rho/Rho kinase signaling mediates increased basal pulmonary vascular tone in chronically hypoxic rats. Am J Physiol Lung Cell Mol Physiol 287:L665–L672

    Article  CAS  PubMed  Google Scholar 

  • Pfitzer G (2001) Rregulation of myosin phosphorylation in smooth muscle. J Appl Physiol 91:497–503

    CAS  PubMed  Google Scholar 

  • Reho JJ, Zheng X, Fisher SA (2014) Smooth muscle contractile diversity in the control of regional circulations. Am J Physiol Heart Circ Physiol 306:H163–H172

    Article  CAS  PubMed  Google Scholar 

  • Riento K, Guasch RM, Garg R, Jin B, Ridley AJ (2003) RhoE binds to ROCK I and inhibits downstream signaling. Mol Cell Biol 23:4219–4229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salamanca DA, Khalil RA (2005) Protein kinase C isoforms as specific targets for modulation of vascular smooth muscle function in hypertension. Biochem Pharmacol 70:1537–1547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sebbagh M, Hamelin J, Bertoglio J, Solary E, Bréard J (2005) Direct cleavage of ROCK II by granzyme B induces target cell membrane blebbing in a caspase-independent manner. J Exp Med 201:465–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y (2009) Serine/threonine phosphatases: mechanism through structure. Cell 139:468–484

    Article  CAS  PubMed  Google Scholar 

  • Shimokawa H, Sunamura S, Satoh K (2016) RhoA/Rho-Kinase in the cardiovascular system. Circ Res 118:352–366

    Article  CAS  PubMed  Google Scholar 

  • Sun YB, Irving M (2010) The molecular basis of the steep force-calcium relation in heart muscle. J Mol Cell Cardiol 48:859–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takashima S (2009) Phosphorylation of myosin regulatory light chain by myosin light chain kinase, and muscle contraction. Circ J 73:208–213

    Article  CAS  PubMed  Google Scholar 

  • Taylor KA, Feig M, Brooks CL 3rd, Fagnant PM, Lowey S, Trybus KM (2014) Role of the essential light chain in the activation of smooth muscle myosin by regulatory light chain phosphorylation. J Struct Biol 185:375–382

    Article  CAS  PubMed  Google Scholar 

  • Tobias IS, Newton AC (2016) Protein scaffolds control localized protein kinase Cζ activity. J Biol Chem 291:13809–13822

    Article  CAS  PubMed  Google Scholar 

  • Tourneux P, Chester M, Grover T, Abman SH (2008) Fasudil inhibits the myogenic response in the fetal pulmonary circulation. Am J Physiol Heart Circ Physiol 295:H1505–H1513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wendt T, Taylor D, Messier T, Trybus KM, Taylor KA (1999) Visualization of head-head interactions in the inhibited state of smooth muscle myosin. J Cell Biol 147:1385–1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson DP, Susnjar M, Kiss E, Sutherland C, Walsh MP (2005) Thromboxane A2-induced contraction of rat caudal arterial smooth muscle involves activation of Ca2+ entry and Ca2+ sensitization: Rho-associated kinase-mediated phosphorylation of MYPT1 at Thr-855, but not Thr-697. Biochem J 389:763–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodsome TP, Eto M, Everett A, Brautigan DL, Kitazawa T (2001) Expression of CPI-17 and myosin phosphatase correlates with Ca2+ sensitivity of protein kinase C-induced contraction in rabbit smooth muscle. J Physiol 535:553–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu-Zhang AX, Newton AC (2013) Protein kinase C pharmacology: refining the toolbox. Biochem J 452:195–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Gao, Y. (2017). Regulation of Myosin Light Chain Phosphorylation. In: Biology of Vascular Smooth Muscle: Vasoconstriction and Dilatation. Springer, Singapore. https://doi.org/10.1007/978-981-10-4810-4_12

Download citation

Publish with us

Policies and ethics